Compressed intracellular motility via non-uniform temporal sampling in dynamic optical coherence tomography.

IF 3 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS Journal of Biomedical Optics Pub Date : 2024-07-01 Epub Date: 2024-07-04 DOI:10.1117/1.JBO.29.7.076002
Amy L Oldenburg, Pan Ji, Xiao Yu, Lin Yang
{"title":"Compressed intracellular motility via non-uniform temporal sampling in dynamic optical coherence tomography.","authors":"Amy L Oldenburg, Pan Ji, Xiao Yu, Lin Yang","doi":"10.1117/1.JBO.29.7.076002","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>Optical coherence tomography has great utility for capturing dynamic processes, but such applications are particularly data-intensive. Samples such as biological tissues exhibit temporal features at varying time scales, which makes data reduction challenging.</p><p><strong>Aim: </strong>We propose a method for capturing short- and long-term correlations of a sample in a compressed way using non-uniform temporal sampling to reduce scan time and memory overhead.</p><p><strong>Approach: </strong>The proposed method separates the relative contributions of white noise, fluctuating features, and stationary features. The method is demonstrated on mammary epithelial cell spheroids in three-dimensional culture for capturing intracellular motility without loss of signal integrity.</p><p><strong>Results: </strong>Results show that the spatial patterns of motility are preserved and that hypothesis tests of spheroids treated with blebbistatin, a motor protein inhibitor, are unchanged with up to eightfold compression.</p><p><strong>Conclusions: </strong>The ability to measure short- and long-term correlations compressively will enable new applications in (3+1)D imaging and high-throughput screening.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"29 7","pages":"076002"},"PeriodicalIF":3.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11223688/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Optics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JBO.29.7.076002","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Significance: Optical coherence tomography has great utility for capturing dynamic processes, but such applications are particularly data-intensive. Samples such as biological tissues exhibit temporal features at varying time scales, which makes data reduction challenging.

Aim: We propose a method for capturing short- and long-term correlations of a sample in a compressed way using non-uniform temporal sampling to reduce scan time and memory overhead.

Approach: The proposed method separates the relative contributions of white noise, fluctuating features, and stationary features. The method is demonstrated on mammary epithelial cell spheroids in three-dimensional culture for capturing intracellular motility without loss of signal integrity.

Results: Results show that the spatial patterns of motility are preserved and that hypothesis tests of spheroids treated with blebbistatin, a motor protein inhibitor, are unchanged with up to eightfold compression.

Conclusions: The ability to measure short- and long-term correlations compressively will enable new applications in (3+1)D imaging and high-throughput screening.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过动态光学相干断层扫描中的非均匀时间采样压缩细胞内运动。
意义重大:光学相干断层成像技术在捕捉动态过程方面有很大的用途,但此类应用特别耗费数据。目的:我们提出了一种方法,利用非均匀时间采样以压缩方式捕捉样本的短期和长期相关性,从而减少扫描时间和内存开销:方法:我们提出的方法可以分离白噪声、波动特征和静态特征的相对贡献。该方法在三维培养的乳腺上皮细胞球上进行了演示,以捕捉细胞内的运动而不损失信号完整性:结果表明,运动的空间模式得以保留,用运动蛋白抑制剂 blebbistatin 处理的球形细胞的假设检验在压缩多达八倍的情况下也保持不变:结论:压缩测量短期和长期相关性的能力将为 (3+1)D 成像和高通量筛选带来新的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.40
自引率
5.70%
发文量
263
审稿时长
2 months
期刊介绍: The Journal of Biomedical Optics publishes peer-reviewed papers on the use of modern optical technology for improved health care and biomedical research.
期刊最新文献
Hyperspectral imaging in neurosurgery: a review of systems, computational methods, and clinical applications. Exploring near-infrared autofluorescence properties in parathyroid tissue: an analysis of fresh and paraffin-embedded thyroidectomy specimens. Impact of signal-to-noise ratio and contrast definition on the sensitivity assessment and benchmarking of fluorescence molecular imaging systems. Comparing spatial distributions of ALA-PpIX and indocyanine green in a whole pig brain glioma model using 3D fluorescence cryotomography. Detection properties of indium-111 and IRDye800CW for intraoperative molecular imaging use across tissue phantom models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1