{"title":"Dementia rhythms: Unveiling the EEG dynamics for MCI detection through spectral and synchrony neuromarkers","authors":"Mesut Şeker, Mehmet Siraç Özerdem","doi":"10.1016/j.jneumeth.2024.110216","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Neurological disorders arise primarily from the dysfunction of brain cells, leading to various impairments. Electroencephalography (EEG) stands out as the most popular method in the discovery of neuromarkers indicating neurological disorders. The proposed study investigates the effectiveness of spectral and synchrony neuromarkers derived from resting state EEG in the detection of Mild Cognitive Impairment (MCI) with controls.</p></div><div><h3>New methods</h3><p>The dataset is composed of 10 MCI and 10 HC groups. Spectral features and synchrony measures are utilized to detect slowing patterns in MCI. Efficient neuro-markers are classified by 25 classification algorithm. Independent samples t-test and Pearson’s Correlation Coefficients are applied to reveal group differences for spectral markers, and repeated measures ANOVA is tested for wPLI-based markers.</p></div><div><h3>Results</h3><p>Lower peak amplitudes are prominent in MCI participants for high frequencies indicating slower physiological behavior of the demented EEG. The MCI and HC groups are correctly classified with 95 % acc. using peak amplitudes of beta band with LGBM classifier. Higher wPLI values are calculated for HC participants in high frequencies. The alpha wPLI values achieve a classification accuracy of 99 % using the LGBM algorithm for MCI detection.</p></div><div><h3>Comparison with existing methods</h3><p>The neuro-markers including peak amplitudes, frequencies, and wPLIs with advanced machine learning techniques showcases the innovative nature of this research.</p></div><div><h3>Conclusion</h3><p>The findings suggest that peak amplitudes and wPLI in high frequency bands derived from resting state EEG are effective neuromarkers for detection of MCI. Spectral and synchrony neuro-markers hold great promise for accurate MCI detection.</p></div>","PeriodicalId":16415,"journal":{"name":"Journal of Neuroscience Methods","volume":"409 ","pages":"Article 110216"},"PeriodicalIF":2.7000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience Methods","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165027024001614","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Neurological disorders arise primarily from the dysfunction of brain cells, leading to various impairments. Electroencephalography (EEG) stands out as the most popular method in the discovery of neuromarkers indicating neurological disorders. The proposed study investigates the effectiveness of spectral and synchrony neuromarkers derived from resting state EEG in the detection of Mild Cognitive Impairment (MCI) with controls.
New methods
The dataset is composed of 10 MCI and 10 HC groups. Spectral features and synchrony measures are utilized to detect slowing patterns in MCI. Efficient neuro-markers are classified by 25 classification algorithm. Independent samples t-test and Pearson’s Correlation Coefficients are applied to reveal group differences for spectral markers, and repeated measures ANOVA is tested for wPLI-based markers.
Results
Lower peak amplitudes are prominent in MCI participants for high frequencies indicating slower physiological behavior of the demented EEG. The MCI and HC groups are correctly classified with 95 % acc. using peak amplitudes of beta band with LGBM classifier. Higher wPLI values are calculated for HC participants in high frequencies. The alpha wPLI values achieve a classification accuracy of 99 % using the LGBM algorithm for MCI detection.
Comparison with existing methods
The neuro-markers including peak amplitudes, frequencies, and wPLIs with advanced machine learning techniques showcases the innovative nature of this research.
Conclusion
The findings suggest that peak amplitudes and wPLI in high frequency bands derived from resting state EEG are effective neuromarkers for detection of MCI. Spectral and synchrony neuro-markers hold great promise for accurate MCI detection.
期刊介绍:
The Journal of Neuroscience Methods publishes papers that describe new methods that are specifically for neuroscience research conducted in invertebrates, vertebrates or in man. Major methodological improvements or important refinements of established neuroscience methods are also considered for publication. The Journal''s Scope includes all aspects of contemporary neuroscience research, including anatomical, behavioural, biochemical, cellular, computational, molecular, invasive and non-invasive imaging, optogenetic, and physiological research investigations.