Elevated plasma protein carbonylation increases the risk of ischemic cerebrovascular events in patients with atrial fibrillation: association with a prothrombotic state.
Karol Nowak, Michal Zabczyk, Joanna Natorska, Jaroslaw Zalewski, Anetta Undas
{"title":"Elevated plasma protein carbonylation increases the risk of ischemic cerebrovascular events in patients with atrial fibrillation: association with a prothrombotic state.","authors":"Karol Nowak, Michal Zabczyk, Joanna Natorska, Jaroslaw Zalewski, Anetta Undas","doi":"10.1007/s11239-024-03003-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Plasma protein carbonylation that reflects oxidative stress has been demonstrated to be associated with the prothrombotic fibrin clot phenotype. However, the role of protein carbonyls (PC) in predicting ischemic stroke in atrial fibrillation (AF) is largely unknown. This study aimed to investigate whether PC increase the risk of stroke in anticoagulated AF patients during follow-up.</p><p><strong>Methods: </strong>In 243 AF patients on anticoagulation (median age 69 years; median CHA<sub>2</sub>DS<sub>2</sub>-VASc of 4), we measured plasma PC using the assay by Becatti, along with plasma clot permeability (K<sub>s</sub>), clot lysis time (CLT), thrombin generation, and fibrinolytic proteins, including plasminogen activator inhibitor type 1 (PAI-1) and thrombin activatable fibrinolysis inhibitor (TAFI). Ischemic stroke, major bleeding, and mortality were recorded during a median follow-up of 53 months.</p><p><strong>Results: </strong>Plasma PC levels (median, 3.16 [2.54-3.99] nM/mg protein) at baseline showed positive associations with age (P < 0.001), CHA<sub>2</sub>DS<sub>2</sub>-VASc (P = 0.003), and N-terminal B-type natriuretic peptide (P = 0.001), but not with type of AF or comorbidities except for heart failure (P = 0.007). PC levels were correlated with CLT (r = 0.342, P < 0.001), endogenous thrombin potential (r = 0.217, P = 0.001) and weakly with Ks (r = -0.145, P = 0.024), but not with fibrinogen, PAI-1, or TAFI levels. Stroke was recorded in 20 patients (1.9%/year), who had at baseline 36% higher PC levels (P < 0.001). Elevated PC (P = 0.003) at baseline were independently associated with stroke risk.</p><p><strong>Conclusion: </strong>Our findings suggest that in patients with AF enhanced protein carbonylation is associated with increased \"residual\" risk of stroke despite anticoagulation, which is at least in part due to unfavorably altered fibrin clot phenotype.</p>","PeriodicalId":17546,"journal":{"name":"Journal of Thrombosis and Thrombolysis","volume":" ","pages":"1206-1215"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11496363/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thrombosis and Thrombolysis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11239-024-03003-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Plasma protein carbonylation that reflects oxidative stress has been demonstrated to be associated with the prothrombotic fibrin clot phenotype. However, the role of protein carbonyls (PC) in predicting ischemic stroke in atrial fibrillation (AF) is largely unknown. This study aimed to investigate whether PC increase the risk of stroke in anticoagulated AF patients during follow-up.
Methods: In 243 AF patients on anticoagulation (median age 69 years; median CHA2DS2-VASc of 4), we measured plasma PC using the assay by Becatti, along with plasma clot permeability (Ks), clot lysis time (CLT), thrombin generation, and fibrinolytic proteins, including plasminogen activator inhibitor type 1 (PAI-1) and thrombin activatable fibrinolysis inhibitor (TAFI). Ischemic stroke, major bleeding, and mortality were recorded during a median follow-up of 53 months.
Results: Plasma PC levels (median, 3.16 [2.54-3.99] nM/mg protein) at baseline showed positive associations with age (P < 0.001), CHA2DS2-VASc (P = 0.003), and N-terminal B-type natriuretic peptide (P = 0.001), but not with type of AF or comorbidities except for heart failure (P = 0.007). PC levels were correlated with CLT (r = 0.342, P < 0.001), endogenous thrombin potential (r = 0.217, P = 0.001) and weakly with Ks (r = -0.145, P = 0.024), but not with fibrinogen, PAI-1, or TAFI levels. Stroke was recorded in 20 patients (1.9%/year), who had at baseline 36% higher PC levels (P < 0.001). Elevated PC (P = 0.003) at baseline were independently associated with stroke risk.
Conclusion: Our findings suggest that in patients with AF enhanced protein carbonylation is associated with increased "residual" risk of stroke despite anticoagulation, which is at least in part due to unfavorably altered fibrin clot phenotype.
期刊介绍:
The Journal of Thrombosis and Thrombolysis is a long-awaited resource for contemporary cardiologists, hematologists, vascular medicine specialists and clinician-scientists actively involved in treatment decisions and clinical investigation of thrombotic disorders involving the cardiovascular and cerebrovascular systems. The principal focus of the Journal centers on the pathobiology of thrombosis and vascular disorders and the use of anticoagulants, platelet antagonists, cell-based therapies and interventions in scientific investigation, clinical-translational research and patient care.
The Journal will publish original work which emphasizes the interface between fundamental scientific principles and clinical investigation, stimulating an interdisciplinary and scholarly dialogue in thrombosis and vascular science. Published works will also define platforms for translational research, drug development, clinical trials and patient-directed applications. The Journal of Thrombosis and Thrombolysis'' integrated format will expand the reader''s knowledge base and provide important insights for both the investigation and direct clinical application of the most rapidly growing fields in medicine-thrombosis and vascular science.