Lei Li, Qingyuan He, Shufeng Wei, Huixian Wang, Zheng Wang, Zhao Wei, Hongyan He, Ce Xiang, Wenhui Yang
{"title":"Fast, high-quality, and unshielded 0.2 T low-field mobile MRI using minimal hardware resources.","authors":"Lei Li, Qingyuan He, Shufeng Wei, Huixian Wang, Zheng Wang, Zhao Wei, Hongyan He, Ce Xiang, Wenhui Yang","doi":"10.1007/s10334-024-01184-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To propose a deep learning-based low-field mobile MRI strategy for fast, high-quality, unshielded imaging using minimal hardware resources.</p><p><strong>Methods: </strong>Firstly, we analyze the correlation of EMI signals between the sensing coil and the MRI coil to preliminarily verify the feasibility of active EMI shielding using a single sensing coil. Then, a powerful deep learning EMI elimination model is proposed, which can accurately predict the EMI components in the MRI coil signals using EMI signals from at least one sensing coil. Further, deep learning models with different task objectives (super-resolution and denoising) are strategically stacked for multi-level post-processing to enable fast and high-quality low-field MRI. Finally, extensive phantom and brain experiments were conducted on a home-built 0.2 T mobile brain scanner for the evaluation of the proposed strategy.</p><p><strong>Results: </strong>20 healthy volunteers were recruited to participate in the experiment. The results show that the proposed strategy enables the 0.2 T scanner to generate images with sufficient anatomical information and diagnostic value under unshielded conditions using a single sensing coil. In particular, the EMI elimination outperforms the state-of-the-art deep learning methods and numerical computation methods. In addition, 2 × super-resolution (DDSRNet) and denoising (SwinIR) techniques enable further improvements in imaging speed and quality.</p><p><strong>Discussion: </strong>The proposed strategy enables low-field mobile MRI scanners to achieve fast, high-quality imaging under unshielded conditions using minimal hardware resources, which has great significance for the widespread deployment of low-field mobile MRI scanners.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":"1091-1104"},"PeriodicalIF":2.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance Materials in Physics, Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10334-024-01184-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: To propose a deep learning-based low-field mobile MRI strategy for fast, high-quality, unshielded imaging using minimal hardware resources.
Methods: Firstly, we analyze the correlation of EMI signals between the sensing coil and the MRI coil to preliminarily verify the feasibility of active EMI shielding using a single sensing coil. Then, a powerful deep learning EMI elimination model is proposed, which can accurately predict the EMI components in the MRI coil signals using EMI signals from at least one sensing coil. Further, deep learning models with different task objectives (super-resolution and denoising) are strategically stacked for multi-level post-processing to enable fast and high-quality low-field MRI. Finally, extensive phantom and brain experiments were conducted on a home-built 0.2 T mobile brain scanner for the evaluation of the proposed strategy.
Results: 20 healthy volunteers were recruited to participate in the experiment. The results show that the proposed strategy enables the 0.2 T scanner to generate images with sufficient anatomical information and diagnostic value under unshielded conditions using a single sensing coil. In particular, the EMI elimination outperforms the state-of-the-art deep learning methods and numerical computation methods. In addition, 2 × super-resolution (DDSRNet) and denoising (SwinIR) techniques enable further improvements in imaging speed and quality.
Discussion: The proposed strategy enables low-field mobile MRI scanners to achieve fast, high-quality imaging under unshielded conditions using minimal hardware resources, which has great significance for the widespread deployment of low-field mobile MRI scanners.
期刊介绍:
MAGMA is a multidisciplinary international journal devoted to the publication of articles on all aspects of magnetic resonance techniques and their applications in medicine and biology. MAGMA currently publishes research papers, reviews, letters to the editor, and commentaries, six times a year. The subject areas covered by MAGMA include:
advances in materials, hardware and software in magnetic resonance technology,
new developments and results in research and practical applications of magnetic resonance imaging and spectroscopy related to biology and medicine,
study of animal models and intact cells using magnetic resonance,
reports of clinical trials on humans and clinical validation of magnetic resonance protocols.