Isolation of Human Hematopoietic Stem Cells from an Apheresis Sample.

Q4 Biochemistry, Genetics and Molecular Biology Methods in molecular biology Pub Date : 2024-07-06 DOI:10.1007/7651_2024_557
Pınar Siyah, Fatih Kocabaş
{"title":"Isolation of Human Hematopoietic Stem Cells from an Apheresis Sample.","authors":"Pınar Siyah, Fatih Kocabaş","doi":"10.1007/7651_2024_557","DOIUrl":null,"url":null,"abstract":"<p><p>The hematopoietic system constantly produces new blood cells through hematopoiesis, and maintaining this balance is vital for human health. This balance is maintained by self-renewing hematopoietic stem cells (HSCs) and various progenitor cells. Under typical circumstances, HSCs are not abundantly found in peripheral blood; hence, their mobilization from the bone marrow is vital. Hematopoietic growth factors achieve this effectively, enabling mobilization and thus allowing blood sample and thus HSC collection via apheresis. Securing a sufficient supply of HSCs is vital for successful hematopoietic reconstitution and the rapid integration of committed cells. Thus, isolation and expansion of HSCs are crucial for convenient extraction, production of transplantable quantities, genetic modifications for enhanced therapeutic efficacy, and as a source of increased/expanded/synthesized blood cells in vitro. In conclusion, the isolation and expansion of HSCs play pivotal roles in both regenerative medicine and hematology. This protocol describes the isolation of human HSCs by providing an overview of the primary method for isolating human hematopoietic stem cells from apheresis blood samples and sheds light on human HSC studies and developments in research and medicine.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/7651_2024_557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

The hematopoietic system constantly produces new blood cells through hematopoiesis, and maintaining this balance is vital for human health. This balance is maintained by self-renewing hematopoietic stem cells (HSCs) and various progenitor cells. Under typical circumstances, HSCs are not abundantly found in peripheral blood; hence, their mobilization from the bone marrow is vital. Hematopoietic growth factors achieve this effectively, enabling mobilization and thus allowing blood sample and thus HSC collection via apheresis. Securing a sufficient supply of HSCs is vital for successful hematopoietic reconstitution and the rapid integration of committed cells. Thus, isolation and expansion of HSCs are crucial for convenient extraction, production of transplantable quantities, genetic modifications for enhanced therapeutic efficacy, and as a source of increased/expanded/synthesized blood cells in vitro. In conclusion, the isolation and expansion of HSCs play pivotal roles in both regenerative medicine and hematology. This protocol describes the isolation of human HSCs by providing an overview of the primary method for isolating human hematopoietic stem cells from apheresis blood samples and sheds light on human HSC studies and developments in research and medicine.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从分离样本中分离人类造血干细胞。
造血系统通过造血不断产生新的血细胞,保持这种平衡对人体健康至关重要。这种平衡由自我更新的造血干细胞(HSCs)和各种祖细胞维持。在通常情况下,造血干细胞并不大量存在于外周血中,因此从骨髓中动员造血干细胞至关重要。造血生长因子能有效地实现这一目的,使造血干细胞动员起来,从而通过无细胞抽吸术采集血液样本和造血干细胞。确保造血干细胞的充足供应对于成功的造血重建和有志细胞的快速整合至关重要。因此,分离和扩增造血干细胞对于方便提取、生产可移植数量、进行基因修饰以提高疗效以及作为体外增殖/扩增/合成血细胞的来源至关重要。总之,分离和扩增造血干细胞在再生医学和血液学中都起着举足轻重的作用。本方案通过概述从无细胞血液样本中分离人类造血干细胞的主要方法,介绍了人类造血干细胞的分离,并阐明了人类造血干细胞研究以及在研究和医学方面的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Methods in molecular biology
Methods in molecular biology Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
2.00
自引率
0.00%
发文量
3536
期刊介绍: For over 20 years, biological scientists have come to rely on the research protocols and methodologies in the critically acclaimed Methods in Molecular Biology series. The series was the first to introduce the step-by-step protocols approach that has become the standard in all biomedical protocol publishing. Each protocol is provided in readily-reproducible step-by-step fashion, opening with an introductory overview, a list of the materials and reagents needed to complete the experiment, and followed by a detailed procedure that is supported with a helpful notes section offering tips and tricks of the trade as well as troubleshooting advice.
期刊最新文献
A Guideline Strategy for Identifying a Viral Gene/Protein Evading Antiviral Innate Immunity. A Guideline Strategy for Identifying Genes/Proteins Regulating Antiviral Innate Immunity. Application of Proteomics Technology Based on LC-MS Combined with Western Blotting and Co-IP in Antiviral Innate Immunity. Click Chemistry in Detecting Protein Modification. CRISPR-Mediated Construction of Gene-Knockout Mice for Investigating Antiviral Innate Immunity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1