{"title":"Age-related differences in retinal function and structure in C57BL/6J and Thy1-YFPh mice","authors":"Pei Ying Lee, Bang V. Bui","doi":"10.1016/j.neurobiolaging.2024.06.005","DOIUrl":null,"url":null,"abstract":"<div><p>Age-related neuronal adaptations are known to help maintain function. This study aims to examine gross age-related <em>in vivo</em> retinal functional adaptations (using electroretinography) in young and middle aged C57BL/6J and Thy1-YFPh mice and to relate this to <em>in vivo</em> retinal structure (using optical coherence tomography). Electroretinography responses were generally larger in Thy1-YFPh mice than in C57BL/6J mice, with similar <em>in vivo</em> retinal layer thicknesses except for longer inner/outer photoreceptor segment in Thy1-YFPh mice. Relative to 3-month-old mice, 12-month-old mice showed reduced photoreceptor (C57BL/6J 84.0±2.5 %; Thy1-YFPh 80.2±5.2 %) and bipolar cell (C57BL/6J 75.6±2.3 %; Thy1-YFPh 68.1±5.5 %) function. There was relative preservation of ganglion cell function (C57BL/6J 79.7±3.7 %; Thy1-YFPh 91.7±5.0 %) with age, which was associated with increased b-wave (bipolar cell) sensitivities to light. Ganglion cell function was correlated with both b-wave amplitude and sensitivity. This study shows that there are normal age-related adaptations to preserve functional output. Different mouse strains may have varied age-related adaptation capacity and should be taken into consideration when examining age-related susceptibility to injury.</p></div>","PeriodicalId":19110,"journal":{"name":"Neurobiology of Aging","volume":"141 ","pages":"Pages 171-181"},"PeriodicalIF":3.7000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0197458024001234/pdfft?md5=02b1a963332ac9bdba26abf96e92e507&pid=1-s2.0-S0197458024001234-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Aging","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0197458024001234","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Age-related neuronal adaptations are known to help maintain function. This study aims to examine gross age-related in vivo retinal functional adaptations (using electroretinography) in young and middle aged C57BL/6J and Thy1-YFPh mice and to relate this to in vivo retinal structure (using optical coherence tomography). Electroretinography responses were generally larger in Thy1-YFPh mice than in C57BL/6J mice, with similar in vivo retinal layer thicknesses except for longer inner/outer photoreceptor segment in Thy1-YFPh mice. Relative to 3-month-old mice, 12-month-old mice showed reduced photoreceptor (C57BL/6J 84.0±2.5 %; Thy1-YFPh 80.2±5.2 %) and bipolar cell (C57BL/6J 75.6±2.3 %; Thy1-YFPh 68.1±5.5 %) function. There was relative preservation of ganglion cell function (C57BL/6J 79.7±3.7 %; Thy1-YFPh 91.7±5.0 %) with age, which was associated with increased b-wave (bipolar cell) sensitivities to light. Ganglion cell function was correlated with both b-wave amplitude and sensitivity. This study shows that there are normal age-related adaptations to preserve functional output. Different mouse strains may have varied age-related adaptation capacity and should be taken into consideration when examining age-related susceptibility to injury.
期刊介绍:
Neurobiology of Aging publishes the results of studies in behavior, biochemistry, cell biology, endocrinology, molecular biology, morphology, neurology, neuropathology, pharmacology, physiology and protein chemistry in which the primary emphasis involves mechanisms of nervous system changes with age or diseases associated with age. Reviews and primary research articles are included, occasionally accompanied by open peer commentary. Letters to the Editor and brief communications are also acceptable. Brief reports of highly time-sensitive material are usually treated as rapid communications in which case editorial review is completed within six weeks and publication scheduled for the next available issue.