{"title":"Cut from the same cloth: RNAs transcribed from regulatory elements","authors":"E.M. Stasevich , A.V. Simonova , E.A. Bogomolova , M.M. Murashko , A.N. Uvarova , E.A. Zheremyan , K.V. Korneev , A.M. Schwartz , D.V. Kuprash , D.E. Demin","doi":"10.1016/j.bbagrm.2024.195049","DOIUrl":null,"url":null,"abstract":"<div><p>A certain degree of chromatin openness is necessary for the activity of transcription-regulating regions within the genome, facilitating accessibility to RNA polymerases and subsequent synthesis of regulatory element RNAs (regRNAs) from these regions. The rapidly increasing number of studies underscores the significance of regRNAs across diverse cellular processes and diseases, challenging the paradigm that these transcripts are non-functional transcriptional noise. This review explores the multifaceted roles of regRNAs in human cells, encompassing rather well-studied entities such as promoter RNAs and enhancer RNAs (eRNAs), while also providing insights into overshadowed silencer RNAs and insulator RNAs. Furthermore, we assess notable examples of shorter regRNAs, like miRNAs, snRNAs, and snoRNAs, playing important roles. Expanding our discourse, we deliberate on the potential usage of regRNAs as biomarkers and novel targets for cancer and other human diseases.</p></div>","PeriodicalId":55382,"journal":{"name":"Biochimica et Biophysica Acta-Gene Regulatory Mechanisms","volume":"1867 3","pages":"Article 195049"},"PeriodicalIF":2.6000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et Biophysica Acta-Gene Regulatory Mechanisms","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874939924000452","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A certain degree of chromatin openness is necessary for the activity of transcription-regulating regions within the genome, facilitating accessibility to RNA polymerases and subsequent synthesis of regulatory element RNAs (regRNAs) from these regions. The rapidly increasing number of studies underscores the significance of regRNAs across diverse cellular processes and diseases, challenging the paradigm that these transcripts are non-functional transcriptional noise. This review explores the multifaceted roles of regRNAs in human cells, encompassing rather well-studied entities such as promoter RNAs and enhancer RNAs (eRNAs), while also providing insights into overshadowed silencer RNAs and insulator RNAs. Furthermore, we assess notable examples of shorter regRNAs, like miRNAs, snRNAs, and snoRNAs, playing important roles. Expanding our discourse, we deliberate on the potential usage of regRNAs as biomarkers and novel targets for cancer and other human diseases.
期刊介绍:
BBA Gene Regulatory Mechanisms includes reports that describe novel insights into mechanisms of transcriptional, post-transcriptional and translational gene regulation. Special emphasis is placed on papers that identify epigenetic mechanisms of gene regulation, including chromatin, modification, and remodeling. This section also encompasses mechanistic studies of regulatory proteins and protein complexes; regulatory or mechanistic aspects of RNA processing; regulation of expression by small RNAs; genomic analysis of gene expression patterns; and modeling of gene regulatory pathways. Papers describing gene promoters, enhancers, silencers or other regulatory DNA regions must incorporate significant functions studies.