Transparent and Colorless Luminescent Solar Concentrators Based on ZnO Quantum Dots for Building-Integrated Photovoltaics

IF 3.7 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY ACS Omega Pub Date : 2024-06-20 DOI:10.1021/acsomega.4c00772
Manuel de J. Fimbres-Romero, Álvaro Flores-Pacheco, Mario E. Álvarez-Ramos and Rosendo Lopez-Delgado*, 
{"title":"Transparent and Colorless Luminescent Solar Concentrators Based on ZnO Quantum Dots for Building-Integrated Photovoltaics","authors":"Manuel de J. Fimbres-Romero,&nbsp;Álvaro Flores-Pacheco,&nbsp;Mario E. Álvarez-Ramos and Rosendo Lopez-Delgado*,&nbsp;","doi":"10.1021/acsomega.4c00772","DOIUrl":null,"url":null,"abstract":"<p >Scientific interest in luminescent solar concentrators (LSCs) has reemerged mainly due to the application of semiconductor quantum dots (QDs) as highly efficient luminophores. Recently, LSCs have become attractive proposals for Building-Integrated photovoltaics (BIPV) since they could help conventional photovoltaics to improve sunlight harvesting and reduce production costs. However, most of the modern LSCs rely on heavy-metal QDs which are highly toxic and may cause environmental concerns. Additionally, their absorption spectra give them a characteristic color limiting their potential application in BIPV. Herein, we fabricated transparent and colorless LSCs by embedding nontoxic and cost-effective zinc oxide quantum dots (ZnO QDs) in a PMMA polymer matrix (ZnO-LSC), preserving the QD optical properties and PMMA transparency. The synthesized colloidal ZnO QDs have an average size of 5.5 nm, a hexagonal wurtzite crystalline structure, a broad yellow photoluminescent signal under ultraviolet excitation, and are highly visibly transparent at the employed concentrations (&gt;95% in wavelengths above 400 nm). The optical characterization of the fabricated ZnO-LSCs showed a good visible transparency of 80.3% average visible transmission (AVT), with an LSC concentration factor (<i>C</i>) of 1.02. An optimal device (ZnO-LSC-O) could reach a <i>C</i> value of 2.66 with the combination of optical properties of colloidal ZnO QDs and PMMA. Finally, simulations of the performance of silicon solar cells coupled to the fabricated and optimal LSCs under standard AM 1.5G illumination were performed employing the software COMSOL Multiphysics. The fabricated ZnO-LSC achieved a simulated maximum power conversion efficiency (PCE) of 3.80%, while the optimal ZnO-LSC-O reached 5.45%. Also, the ZnO-LSC generated a maximum power of 15.02 mW and the ZnO-LSC-O generated 40.33 mW, employing the same active area as the simulated solar cell directly illuminated, which generated 14.39 mW. These results indicate that the ZnO QD-based LSCs may be useful as transparent photovoltaic windows for BIPV applications.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c00772","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c00772","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Scientific interest in luminescent solar concentrators (LSCs) has reemerged mainly due to the application of semiconductor quantum dots (QDs) as highly efficient luminophores. Recently, LSCs have become attractive proposals for Building-Integrated photovoltaics (BIPV) since they could help conventional photovoltaics to improve sunlight harvesting and reduce production costs. However, most of the modern LSCs rely on heavy-metal QDs which are highly toxic and may cause environmental concerns. Additionally, their absorption spectra give them a characteristic color limiting their potential application in BIPV. Herein, we fabricated transparent and colorless LSCs by embedding nontoxic and cost-effective zinc oxide quantum dots (ZnO QDs) in a PMMA polymer matrix (ZnO-LSC), preserving the QD optical properties and PMMA transparency. The synthesized colloidal ZnO QDs have an average size of 5.5 nm, a hexagonal wurtzite crystalline structure, a broad yellow photoluminescent signal under ultraviolet excitation, and are highly visibly transparent at the employed concentrations (>95% in wavelengths above 400 nm). The optical characterization of the fabricated ZnO-LSCs showed a good visible transparency of 80.3% average visible transmission (AVT), with an LSC concentration factor (C) of 1.02. An optimal device (ZnO-LSC-O) could reach a C value of 2.66 with the combination of optical properties of colloidal ZnO QDs and PMMA. Finally, simulations of the performance of silicon solar cells coupled to the fabricated and optimal LSCs under standard AM 1.5G illumination were performed employing the software COMSOL Multiphysics. The fabricated ZnO-LSC achieved a simulated maximum power conversion efficiency (PCE) of 3.80%, while the optimal ZnO-LSC-O reached 5.45%. Also, the ZnO-LSC generated a maximum power of 15.02 mW and the ZnO-LSC-O generated 40.33 mW, employing the same active area as the simulated solar cell directly illuminated, which generated 14.39 mW. These results indicate that the ZnO QD-based LSCs may be useful as transparent photovoltaic windows for BIPV applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 ZnO 量子点的透明无色发光太阳能聚光器,用于建筑一体化光伏系统
科学界对发光太阳能聚光器(LSCs)的兴趣再次兴起,主要是因为半导体量子点(QDs)作为高效发光体的应用。最近,发光太阳能聚光器已成为光伏建筑一体化(BIPV)的诱人提案,因为它们可以帮助传统光伏技术改善太阳光收集并降低生产成本。然而,大多数现代 LSC 依赖于重金属 QD,而重金属 QD 具有剧毒,可能会引起环境问题。此外,它们的吸收光谱使其具有特有的颜色,限制了其在 BIPV 中的潜在应用。在此,我们将无毒且成本低廉的氧化锌量子点(ZnO QDs)嵌入 PMMA 聚合物基质(ZnO-LSC)中,制造出了透明无色的 LSC,同时保留了 QD 的光学特性和 PMMA 的透明度。合成的胶体氧化锌量子点的平均尺寸为 5.5 nm,具有六方菱形晶体结构,在紫外线激发下可发出宽广的黄色光致发光信号,并且在所采用的浓度下具有高度的可见透明性(在 400 nm 以上波长中为 95%)。对制备的氧化锌-LSCs 进行的光学表征表明,其具有良好的可见光透明度,平均可见光透射率(AVT)为 80.3%,LSC 浓度系数(C)为 1.02。结合胶体 ZnO QDs 和 PMMA 的光学特性,最佳器件(ZnO-LSC-O)的 C 值可达到 2.66。最后,利用 COMSOL Multiphysics 软件模拟了在标准 AM 1.5G 光照下,硅太阳能电池与所制造的和最佳 LSC 相耦合的性能。所制造的 ZnO-LSC 实现了 3.80% 的模拟最大功率转换效率 (PCE),而最佳 ZnO-LSC-O 则达到了 5.45%。此外,ZnO-LSC 产生的最大功率为 15.02 mW,ZnO-LSC-O 产生的最大功率为 40.33 mW,采用的活性面积与直接照射的模拟太阳能电池相同,后者产生的功率为 14.39 mW。这些结果表明,基于 ZnO QD 的 LSC 可用作 BIPV 应用中的透明光伏窗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Repair of Underwater Concrete Cracks on Dam Surface: Optimization Analysis of the Grouting Process with Surface Sealing CO2/H2 Separation by Synergistic Enhanced Hydrate Method with SDS and R134a Gold Nanoparticles in Nanobiotechnology: From Synthesis to Biosensing Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1