Magnesium-based nanocomposites developed through multi-pass friction stir processing and strengthening mechanisms exploration
Entwicklung von magnesiumbasierten Nanoverbundwerkstoffen durch einen mehrstufigen Rührreibschweißprozess und Erforschung der Verfestigungsmechanismen
{"title":"Magnesium-based nanocomposites developed through multi-pass friction stir processing and strengthening mechanisms exploration\n Entwicklung von magnesiumbasierten Nanoverbundwerkstoffen durch einen mehrstufigen Rührreibschweißprozess und Erforschung der Verfestigungsmechanismen","authors":"P. Sagar, A. Handa, Sushma Sangwan","doi":"10.1002/mawe.202300291","DOIUrl":null,"url":null,"abstract":"<p>In the current experimental work, using secondary phase hard nano titanium carbide (TiC) particles as reinforcement, two different magnesium metal matrices i. e., AZ31B/TiC and AZ61 A/TiC composite materials were synthesized by friction stir processing. Using the traditional testing approach for the developed materials, the simultaneous gain in metallurgical, mechanical, electrical, and tribological characteristics compared to the base substrate was examined. The microstructure study results for AZ31B/TiC and AZ61 A/TiC composites showed a uniform distribution of reinforced particles as well as an evolution in grain size, from 82 μm to 4.2 μm and from 74 μm to 3.7 μm, respectively, which consequently contribute in a significant gain in the microhardness of both composites i. e., around 2.2 times and 2.67 times respectively, greater than the base metal. When compared to monolithic alloys, the synthesized AZ31B/TiC and AZ61 A/TiC composites showed improvements in the areas of tensile strength, compressive strength, and coefficient of friction up to 1.81 times, and 1.64 times, 1.74 times and 1.58 times, and 57.92 % and 58.47 %, respectively. Furthermore, these improvements in characteristics also increase the final strengthening of the nanocomposite and reduce electrical conductivity.</p>","PeriodicalId":18366,"journal":{"name":"Materialwissenschaft und Werkstofftechnik","volume":"55 6","pages":"758-772"},"PeriodicalIF":1.2000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materialwissenschaft und Werkstofftechnik","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mawe.202300291","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In the current experimental work, using secondary phase hard nano titanium carbide (TiC) particles as reinforcement, two different magnesium metal matrices i. e., AZ31B/TiC and AZ61 A/TiC composite materials were synthesized by friction stir processing. Using the traditional testing approach for the developed materials, the simultaneous gain in metallurgical, mechanical, electrical, and tribological characteristics compared to the base substrate was examined. The microstructure study results for AZ31B/TiC and AZ61 A/TiC composites showed a uniform distribution of reinforced particles as well as an evolution in grain size, from 82 μm to 4.2 μm and from 74 μm to 3.7 μm, respectively, which consequently contribute in a significant gain in the microhardness of both composites i. e., around 2.2 times and 2.67 times respectively, greater than the base metal. When compared to monolithic alloys, the synthesized AZ31B/TiC and AZ61 A/TiC composites showed improvements in the areas of tensile strength, compressive strength, and coefficient of friction up to 1.81 times, and 1.64 times, 1.74 times and 1.58 times, and 57.92 % and 58.47 %, respectively. Furthermore, these improvements in characteristics also increase the final strengthening of the nanocomposite and reduce electrical conductivity.
期刊介绍:
Materialwissenschaft und Werkstofftechnik provides fundamental and practical information for those concerned with materials development, manufacture, and testing.
Both technical and economic aspects are taken into consideration in order to facilitate choice of the material that best suits the purpose at hand. Review articles summarize new developments and offer fresh insight into the various aspects of the discipline.
Recent results regarding material selection, use and testing are described in original articles, which also deal with failure treatment and investigation. Abstracts of new publications from other journals as well as lectures presented at meetings and reports about forthcoming events round off the journal.