{"title":"First report of the nematode-trapping fungus Arthrobotrys thaumasia in Türkiye and its biocontrol potential against Meloidogyne incognita","authors":"Cafer Eken, Gülsüm Uysal, Dudu Demir, Selda Çalişkan, Emre Sevindik, Kardelen Çağlayan","doi":"10.1111/jph.13354","DOIUrl":null,"url":null,"abstract":"<p>Root-knot nematodes, particularly, <i>Meloidogyne incognita</i>, are among the most destructive endoparasitic nematodes, infecting a diverse range of plant hosts. Nematode-trapping fungi are known for their potential application as biological control agents against plant parasitic nematodes. In the present study, the nematode-trapping fungus <i>Arthrobotrys thaumasia</i> was isolated from the rhizosphere soil of tomato plants in the West Mediterranean Region of Türkiye. Two hundred and twenty-three tomato plant rhizosphere soil samples yielded six nematode-trapping fungal isolates, giving an occurrence frequency of 2.69%. Using morphology and molecular marker sequences (ITS and β-tubulin loci), the species of the fungi was confirmed to be <i>A</i>. <i>thaumasia</i>. In vitro, <i>A. thaumasia</i> reduced second-stage juveniles of <i>M. incognita</i> by 77.5% (isolate I-Y4-2) and 72.5% (isolate B-G5-1). This is the first report on the isolation and characterization of the nematode-trapping fungus <i>A</i>. <i>thaumasia</i> from Türkiye. Two isolates of <i>A</i>. <i>thaumasia</i> (I-Y4-2 and B-G5-1) appear to be promising biological control agents that may be utilized for controlling <i>M</i>. <i>incognita</i>-caused root-knot diseases.</p>","PeriodicalId":16843,"journal":{"name":"Journal of Phytopathology","volume":"172 4","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Phytopathology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jph.13354","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Root-knot nematodes, particularly, Meloidogyne incognita, are among the most destructive endoparasitic nematodes, infecting a diverse range of plant hosts. Nematode-trapping fungi are known for their potential application as biological control agents against plant parasitic nematodes. In the present study, the nematode-trapping fungus Arthrobotrys thaumasia was isolated from the rhizosphere soil of tomato plants in the West Mediterranean Region of Türkiye. Two hundred and twenty-three tomato plant rhizosphere soil samples yielded six nematode-trapping fungal isolates, giving an occurrence frequency of 2.69%. Using morphology and molecular marker sequences (ITS and β-tubulin loci), the species of the fungi was confirmed to be A. thaumasia. In vitro, A. thaumasia reduced second-stage juveniles of M. incognita by 77.5% (isolate I-Y4-2) and 72.5% (isolate B-G5-1). This is the first report on the isolation and characterization of the nematode-trapping fungus A. thaumasia from Türkiye. Two isolates of A. thaumasia (I-Y4-2 and B-G5-1) appear to be promising biological control agents that may be utilized for controlling M. incognita-caused root-knot diseases.
期刊介绍:
Journal of Phytopathology publishes original and review articles on all scientific aspects of applied phytopathology in agricultural and horticultural crops. Preference is given to contributions improving our understanding of the biotic and abiotic determinants of plant diseases, including epidemics and damage potential, as a basis for innovative disease management, modelling and forecasting. This includes practical aspects and the development of methods for disease diagnosis as well as infection bioassays.
Studies at the population, organism, physiological, biochemical and molecular genetic level are welcome. The journal scope comprises the pathology and epidemiology of plant diseases caused by microbial pathogens, viruses and nematodes.
Accepted papers should advance our conceptual knowledge of plant diseases, rather than presenting descriptive or screening data unrelated to phytopathological mechanisms or functions. Results from unrepeated experimental conditions or data with no or inappropriate statistical processing will not be considered. Authors are encouraged to look at past issues to ensure adherence to the standards of the journal.