Genomic Modifications of Lactic Acid Bacteria and Their Applications in Dairy Fermentation.

IF 3.7 1区 农林科学 Q1 AGRICULTURE, DAIRY & ANIMAL SCIENCE Journal of Dairy Science Pub Date : 2024-07-03 DOI:10.3168/jds.2024-24989
Zifan Xie, Olivia McAuliffe, Yong-Su Jin, Michael J Miller
{"title":"Genomic Modifications of Lactic Acid Bacteria and Their Applications in Dairy Fermentation.","authors":"Zifan Xie, Olivia McAuliffe, Yong-Su Jin, Michael J Miller","doi":"10.3168/jds.2024-24989","DOIUrl":null,"url":null,"abstract":"<p><p>Lactic Acid Bacteria (LAB) have a long history of safe use in milk fermentation and are generally recognized as health-promoting microorganisms when present in fermented foods. LAB are also important components of the human intestinal microbiota and are widely used as probiotics. Considering their safe and health-beneficial properties, LAB are considered appropriate vehicles that can be genetically modified for food, industrial and pharmaceutical applications. Here, this review describes (1) the potential opportunities for application of genetically modified LAB strains in dairy fermentation and (2) the various genomic modification tools for LAB strains, such as random mutagenesis, adaptive laboratory evolution, conjugation, homologous recombination, recombineering, and CRISPR (clustered regularly interspaced short palindromic repeat)- Cas (CRISPR-associated protein) based genome engineering. Lastly, this review also discusses the potential future developments of these genomic modification technologies and their applications in dairy fermentations.</p>","PeriodicalId":354,"journal":{"name":"Journal of Dairy Science","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dairy Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3168/jds.2024-24989","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Lactic Acid Bacteria (LAB) have a long history of safe use in milk fermentation and are generally recognized as health-promoting microorganisms when present in fermented foods. LAB are also important components of the human intestinal microbiota and are widely used as probiotics. Considering their safe and health-beneficial properties, LAB are considered appropriate vehicles that can be genetically modified for food, industrial and pharmaceutical applications. Here, this review describes (1) the potential opportunities for application of genetically modified LAB strains in dairy fermentation and (2) the various genomic modification tools for LAB strains, such as random mutagenesis, adaptive laboratory evolution, conjugation, homologous recombination, recombineering, and CRISPR (clustered regularly interspaced short palindromic repeat)- Cas (CRISPR-associated protein) based genome engineering. Lastly, this review also discusses the potential future developments of these genomic modification technologies and their applications in dairy fermentations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
乳酸菌的基因组改造及其在乳制品发酵中的应用。
乳酸菌(LAB)在牛奶发酵中的安全使用由来已久,人们普遍认为发酵食品中的乳酸菌是促进健康的微生物。乳酸菌也是人体肠道微生物群的重要组成部分,被广泛用作益生菌。考虑到其安全和有益健康的特性,LAB 被认为是可转基因用于食品、工业和医药应用的适当载体。本综述介绍了(1)转基因 LAB 菌株在乳制品发酵中的潜在应用机会;(2)LAB 菌株的各种基因组改造工具,如随机诱变、适应性实验室进化、共轭、同源重组、重组工程和基于 CRISPR(簇状规则间隔短回文重复)- Cas(CRISPR 相关蛋白)的基因组工程。最后,本综述还讨论了这些基因组改造技术未来的潜在发展及其在乳品发酵中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Dairy Science
Journal of Dairy Science 农林科学-奶制品与动物科学
CiteScore
7.90
自引率
17.10%
发文量
784
审稿时长
4.2 months
期刊介绍: The official journal of the American Dairy Science Association®, Journal of Dairy Science® (JDS) is the leading peer-reviewed general dairy research journal in the world. JDS readers represent education, industry, and government agencies in more than 70 countries with interests in biochemistry, breeding, economics, engineering, environment, food science, genetics, microbiology, nutrition, pathology, physiology, processing, public health, quality assurance, and sanitation.
期刊最新文献
Comparative transcriptomic analysis of the flavor production mechanism in yogurt by traditional starter strains. Etiology and epidemiology of digital dermatitis in Australian dairy herds. Effects of a multistrain Bacillus-based direct-fed microbial on gastrointestinal permeability and biomarkers of inflammation during and following feed restriction in mid-lactation Holstein cows. Long-term effects of 3-nitrooxypropanol on methane emission and milk production characteristics in Holstein-Friesian dairy cows. Replacing soybean meal with microalgae biomass in diets with contrasting carbohydrate profiles can reduce in vitro methane production and improve short-chain fatty acid production.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1