Robust fault detection and adaptive fixed-time fault-tolerant control for quadrotor UAVs

IF 4.3 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Robotics and Autonomous Systems Pub Date : 2024-06-24 DOI:10.1016/j.robot.2024.104747
Mahmood Mazare, Mostafa Taghizadeh, Pegah Ghaf-Ghanbari, Ehsan Davoodi
{"title":"Robust fault detection and adaptive fixed-time fault-tolerant control for quadrotor UAVs","authors":"Mahmood Mazare,&nbsp;Mostafa Taghizadeh,&nbsp;Pegah Ghaf-Ghanbari,&nbsp;Ehsan Davoodi","doi":"10.1016/j.robot.2024.104747","DOIUrl":null,"url":null,"abstract":"<div><p>This note scrutinizes an adaptive fault-tolerant control (FTC) approach tailored for unmanned aerial vehicles (UAVs), addressing the critical need for both fault accommodation and disturbance suppression. Departing from traditional reliance on robust discontinuous control strategies prone to chattering and demanding precise uncertainty bounds, our FTC method ensures fixed-time stability, guaranteeing the convergence of attitude tracking errors to zero. Central to our approach is an adaptive algorithm adept at concurrently estimating unknown actuator faults and upper bounds of lumped uncertainties. Moreover, our adaptive schemes accurately estimate the upper bound of the lumped uncertainty term, encompassing model uncertainties, external disturbances, and unmodeled dynamics, thereby eliminating the need for assuming known bounds on uncertainties. Stability analysis under the developed control law is thoroughly performed using the Lyapunov stability theory. Notably, our strategy employs an extended Kalman filter (EKF) observer for state estimation and fault detection, facilitating fault detection through an adaptive threshold technique dynamically adjusted based on real-time mean and variance of the residual signal. Through comprehensive simulation and experimental validations, our proposed methodology demonstrates significant advancements in ensuring safety and reliability in UAVs.</p></div>","PeriodicalId":49592,"journal":{"name":"Robotics and Autonomous Systems","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Autonomous Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921889024001313","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This note scrutinizes an adaptive fault-tolerant control (FTC) approach tailored for unmanned aerial vehicles (UAVs), addressing the critical need for both fault accommodation and disturbance suppression. Departing from traditional reliance on robust discontinuous control strategies prone to chattering and demanding precise uncertainty bounds, our FTC method ensures fixed-time stability, guaranteeing the convergence of attitude tracking errors to zero. Central to our approach is an adaptive algorithm adept at concurrently estimating unknown actuator faults and upper bounds of lumped uncertainties. Moreover, our adaptive schemes accurately estimate the upper bound of the lumped uncertainty term, encompassing model uncertainties, external disturbances, and unmodeled dynamics, thereby eliminating the need for assuming known bounds on uncertainties. Stability analysis under the developed control law is thoroughly performed using the Lyapunov stability theory. Notably, our strategy employs an extended Kalman filter (EKF) observer for state estimation and fault detection, facilitating fault detection through an adaptive threshold technique dynamically adjusted based on real-time mean and variance of the residual signal. Through comprehensive simulation and experimental validations, our proposed methodology demonstrates significant advancements in ensuring safety and reliability in UAVs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
四旋翼无人飞行器的鲁棒故障检测和自适应固定时间容错控制
本论文仔细研究了为无人驾驶飞行器(UAV)量身定制的自适应容错控制(FTC)方法,解决了容错和抑制干扰的关键需求。我们的 FTC 方法有别于传统的依赖于容易产生颤振和要求精确不确定性边界的鲁棒非连续控制策略,它能确保固定时间稳定性,保证姿态跟踪误差收敛为零。我们方法的核心是一种自适应算法,它善于同时估计未知致动器故障和整块不确定性的上限。此外,我们的自适应方案还能准确估计整块不确定性项的上限,包括模型不确定性、外部干扰和未建模的动态,从而消除了假设不确定性已知上限的需要。利用 Lyapunov 稳定性理论对所开发的控制法则进行了全面的稳定性分析。值得注意的是,我们的策略采用了扩展卡尔曼滤波器(EKF)观测器进行状态估计和故障检测,通过基于残差信号的实时均值和方差动态调整的自适应阈值技术促进故障检测。通过全面的模拟和实验验证,我们提出的方法在确保无人机的安全性和可靠性方面取得了重大进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Robotics and Autonomous Systems
Robotics and Autonomous Systems 工程技术-机器人学
CiteScore
9.00
自引率
7.00%
发文量
164
审稿时长
4.5 months
期刊介绍: Robotics and Autonomous Systems will carry articles describing fundamental developments in the field of robotics, with special emphasis on autonomous systems. An important goal of this journal is to extend the state of the art in both symbolic and sensory based robot control and learning in the context of autonomous systems. Robotics and Autonomous Systems will carry articles on the theoretical, computational and experimental aspects of autonomous systems, or modules of such systems.
期刊最新文献
A survey of demonstration learning Model-less optimal visual control of tendon-driven continuum robots using recurrent neural network-based neurodynamic optimization Editorial Board GSC: A graph-based skill composition framework for robot learning DewROS2: A platform for informed Dew Robotics in ROS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1