{"title":"Generating functions of non-backtracking walks on weighted digraphs: Radius of convergence and Ihara's theorem","authors":"Vanni Noferini , María C. Quintana","doi":"10.1016/j.laa.2024.06.022","DOIUrl":null,"url":null,"abstract":"<div><p>It is known that the generating function associated with the enumeration of non-backtracking walks on finite graphs is a rational matrix-valued function of the parameter; such function is also closely related to graph-theoretical results such as Ihara's theorem and the zeta function on graphs. In Grindrod et al. <span>[13]</span>, the radius of convergence of the generating function was studied for simple (i.e., undirected, unweighted and with no loops) graphs, and shown to depend on the number of cycles in the graph. In this paper, we use technologies from the theory of polynomial and rational matrices to greatly extend these results by studying the radius of convergence of the corresponding generating function for general, possibly directed and/or weighted, graphs. We give an analogous characterization of the radius of convergence for directed (unweighted or weighted) graphs, showing that it depends on the number of cycles in the undirectization of the graph. We also consider backtrack-downweighted walks on unweighted digraphs, and we prove a version of Ihara's theorem in that case. Finally, for weighted directed graphs, we provide for the first time an exact formula for the radius of convergence, improving a previous result that exhibited a lower bound, and we also prove a version of Ihara's theorem.</p></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0024379524002763/pdfft?md5=cac16eb3054eb6231f0700f90e0e55f9&pid=1-s2.0-S0024379524002763-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379524002763","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
It is known that the generating function associated with the enumeration of non-backtracking walks on finite graphs is a rational matrix-valued function of the parameter; such function is also closely related to graph-theoretical results such as Ihara's theorem and the zeta function on graphs. In Grindrod et al. [13], the radius of convergence of the generating function was studied for simple (i.e., undirected, unweighted and with no loops) graphs, and shown to depend on the number of cycles in the graph. In this paper, we use technologies from the theory of polynomial and rational matrices to greatly extend these results by studying the radius of convergence of the corresponding generating function for general, possibly directed and/or weighted, graphs. We give an analogous characterization of the radius of convergence for directed (unweighted or weighted) graphs, showing that it depends on the number of cycles in the undirectization of the graph. We also consider backtrack-downweighted walks on unweighted digraphs, and we prove a version of Ihara's theorem in that case. Finally, for weighted directed graphs, we provide for the first time an exact formula for the radius of convergence, improving a previous result that exhibited a lower bound, and we also prove a version of Ihara's theorem.
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.