Chroma: A MATLAB package and open-source platform for biomarker data processing and automatic index calculations

IF 4.2 2区 地球科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Geosciences Pub Date : 2024-06-29 DOI:10.1016/j.cageo.2024.105675
Julian Traphagan, Guangsheng Zhuang
{"title":"Chroma: A MATLAB package and open-source platform for biomarker data processing and automatic index calculations","authors":"Julian Traphagan,&nbsp;Guangsheng Zhuang","doi":"10.1016/j.cageo.2024.105675","DOIUrl":null,"url":null,"abstract":"<div><p>The molecular ratio indices of biological markers (biomarkers), such as the Carbon Preference Index (CPI) or <em>P</em><sub>aq</sub>, are frequently used as proxies for paleoclimatic and palaeoecological conditions. These indices are regularly extracted from the relative abundances of target molecules detected by a Gas Chromatography analyzer with a Flame Ionization Detector (GC-FID). Despite their use in biogeochemical studies for over a half-century, it remains common procedure to quantify the abundance of individual compounds by manual integration of chromatogram peaks (i.e., interpret baselines visually and characterize peaks by hand), which is time consuming and can lead to inconsistent results. Here, we introduce a new MATLAB package (Chroma) for the automatic detection and integration of standard-referenced biomarker abundances and the calculation of a variety of established hydrocarbon indices commonly reported in the published literature. The algorithm identifies the detector response timing of specific target peaks in a sample chromatogram by cross-referencing to a standard (e.g., Mix-A6, Schimmelmann, Indiana University Bloomington), then calculates the peak areas for an approximation of molecular abundance. This new toolkit for automatic and rapid integration of GC-acquired data provides a consistent and reproducible approach for the calculation of hydrocarbon indices and offers a standardized inter-laboratory platform for data comparisons and exchange. We validate the utility of the Chroma package with the chromatograms of plant wax <em>n</em>-alkanes, a widely used proxy for ecology and hydrology, from six stratigraphic sections in the Tibetan Plateau. Chroma is an effective tool for efficient data processing and will continuously evolve to accommodate extended uses in related areas of biomarker research beyond <em>n</em>-alkanes.</p></div>","PeriodicalId":55221,"journal":{"name":"Computers & Geosciences","volume":"191 ","pages":"Article 105675"},"PeriodicalIF":4.2000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Geosciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098300424001584","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The molecular ratio indices of biological markers (biomarkers), such as the Carbon Preference Index (CPI) or Paq, are frequently used as proxies for paleoclimatic and palaeoecological conditions. These indices are regularly extracted from the relative abundances of target molecules detected by a Gas Chromatography analyzer with a Flame Ionization Detector (GC-FID). Despite their use in biogeochemical studies for over a half-century, it remains common procedure to quantify the abundance of individual compounds by manual integration of chromatogram peaks (i.e., interpret baselines visually and characterize peaks by hand), which is time consuming and can lead to inconsistent results. Here, we introduce a new MATLAB package (Chroma) for the automatic detection and integration of standard-referenced biomarker abundances and the calculation of a variety of established hydrocarbon indices commonly reported in the published literature. The algorithm identifies the detector response timing of specific target peaks in a sample chromatogram by cross-referencing to a standard (e.g., Mix-A6, Schimmelmann, Indiana University Bloomington), then calculates the peak areas for an approximation of molecular abundance. This new toolkit for automatic and rapid integration of GC-acquired data provides a consistent and reproducible approach for the calculation of hydrocarbon indices and offers a standardized inter-laboratory platform for data comparisons and exchange. We validate the utility of the Chroma package with the chromatograms of plant wax n-alkanes, a widely used proxy for ecology and hydrology, from six stratigraphic sections in the Tibetan Plateau. Chroma is an effective tool for efficient data processing and will continuously evolve to accommodate extended uses in related areas of biomarker research beyond n-alkanes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Chroma:用于生物标记数据处理和自动指数计算的 MATLAB 软件包和开源平台
生物标记物(生物标志物)的分子比率指数,如碳偏好指数(CPI)或 Paq,经常被用作古气候和古生态条件的代用指标。这些指数通常是从带有火焰离子化检测器(GC-FID)的气相色谱分析仪检测到的目标分子相对丰度中提取出来的。尽管在生物地球化学研究中使用这种方法已有半个多世纪,但通过手动整合色谱峰来量化单个化合物的丰度(即通过视觉解释基线并手动描述峰值)仍是常见的程序,这不仅耗时,而且可能导致结果不一致。在此,我们介绍一种新的 MATLAB 软件包(Chroma),用于自动检测和整合标准参照生物标志物丰度,并计算已发表文献中常见的各种既定碳氢化合物指数。该算法通过与标准(例如,Mix-A6,Schimmelmann,印第安纳大学布卢明顿分校)相互参照,确定样品色谱图中特定目标峰的检测器响应时间,然后计算峰面积以近似计算分子丰度。这种用于自动快速整合气相色谱采集数据的新工具包为碳氢化合物指数的计算提供了一种一致且可重复的方法,并为数据比较和交流提供了一个标准化的实验室间平台。我们利用青藏高原六个地层剖面的植物蜡正构烷烃色谱图验证了 Chroma 软件包的实用性。Chroma 是高效处理数据的有效工具,并将不断发展以适应正构烷烃以外的生物标志物研究相关领域的扩展应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Geosciences
Computers & Geosciences 地学-地球科学综合
CiteScore
9.30
自引率
6.80%
发文量
164
审稿时长
3.4 months
期刊介绍: Computers & Geosciences publishes high impact, original research at the interface between Computer Sciences and Geosciences. Publications should apply modern computer science paradigms, whether computational or informatics-based, to address problems in the geosciences.
期刊最新文献
Multimodal feature integration network for lithology identification from point cloud data A two-dimensional magnetotelluric deep learning inversion approach based on improved Dense Convolutional Network Removing atmospheric noise from InSAR interferograms in mountainous regions with a convolutional neural network Novel empirical curvelet denoising strategy for suppressing mixed noise of microseismic data Curvilinear lineament extraction: Bayesian optimization of Principal Component Wavelet Analysis and Hysteresis Thresholding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1