A quantal diffusion approach for multinucleon transfer in heavy-ion collisions

IF 1.7 4区 物理与天体物理 Q2 PHYSICS, NUCLEAR Nuclear Physics A Pub Date : 2024-06-28 DOI:10.1016/j.nuclphysa.2024.122916
A. Kayaalp , M. Arik , S.E. Ocal , O. Yilmaz , S. Ayik , A.S. Umar
{"title":"A quantal diffusion approach for multinucleon transfer in heavy-ion collisions","authors":"A. Kayaalp ,&nbsp;M. Arik ,&nbsp;S.E. Ocal ,&nbsp;O. Yilmaz ,&nbsp;S. Ayik ,&nbsp;A.S. Umar","doi":"10.1016/j.nuclphysa.2024.122916","DOIUrl":null,"url":null,"abstract":"<div><p>The stochastic mean-field (SMF) approach beyond the time-dependent-Hartree-Fock theory is used to explore the primary production cross sections in <span><math><mmultiscripts><mrow><mtext>Ni</mtext></mrow><mprescripts></mprescripts><none></none><mrow><mn>64</mn></mrow></mmultiscripts><mo>+</mo><msup><mrow></mrow><mrow><mn>130</mn></mrow></msup><mtext>Te</mtext></math></span> at the bombarding energy <span><math><msub><mrow><mi>E</mi></mrow><mrow><mtext>c.m.</mtext></mrow></msub><mo>=</mo><mn>184.3</mn></math></span> MeV and <span><math><mmultiscripts><mrow><mtext>Pb</mtext></mrow><mprescripts></mprescripts><none></none><mrow><mn>206</mn></mrow></mmultiscripts><mo>+</mo><msup><mrow></mrow><mrow><mn>118</mn></mrow></msup><mtext>Sn</mtext></math></span> at <span><math><msub><mrow><mi>E</mi></mrow><mrow><mtext>c.m.</mtext></mrow></msub><mo>=</mo><mn>436.8</mn></math></span> MeV. Secondary production cross-sections in the same systems are calculated using a statistical de-excitation model with GEMINI++ code. The obtained results are compared with available experimental data. Analysis employing SMF and GEMINI++ exhibit a good agreement with the experimental data.</p></div>","PeriodicalId":19246,"journal":{"name":"Nuclear Physics A","volume":"1050 ","pages":"Article 122916"},"PeriodicalIF":1.7000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics A","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375947424000988","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

The stochastic mean-field (SMF) approach beyond the time-dependent-Hartree-Fock theory is used to explore the primary production cross sections in Ni64+130Te at the bombarding energy Ec.m.=184.3 MeV and Pb206+118Sn at Ec.m.=436.8 MeV. Secondary production cross-sections in the same systems are calculated using a statistical de-excitation model with GEMINI++ code. The obtained results are compared with available experimental data. Analysis employing SMF and GEMINI++ exhibit a good agreement with the experimental data.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
重离子碰撞中多核子转移的量子扩散方法
利用随机平均场(SMF)方法超越了时间相关哈特里-福克理论,探索了Ni64+130Te在轰击能量Ec.m.=184.3MeV和Pb206+118Sn在Ec.m.=436.8MeV时的一次生成截面。利用 GEMINI++ 代码的统计去激化模型计算了同一系统中的二次生成截面。所得结果与现有实验数据进行了比较。使用 SMF 和 GEMINI++ 进行的分析表明与实验数据有很好的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nuclear Physics A
Nuclear Physics A 物理-物理:核物理
CiteScore
3.60
自引率
7.10%
发文量
113
审稿时长
61 days
期刊介绍: Nuclear Physics A focuses on the domain of nuclear and hadronic physics and includes the following subsections: Nuclear Structure and Dynamics; Intermediate and High Energy Heavy Ion Physics; Hadronic Physics; Electromagnetic and Weak Interactions; Nuclear Astrophysics. The emphasis is on original research papers. A number of carefully selected and reviewed conference proceedings are published as an integral part of the journal.
期刊最新文献
Absorption of ψ(2S) mesons in nuclei High-energy Coulomb scattering of spatially extended particles Editorial Board Triaxial shape evolution and shape coexistence in Radon isotopes within the covariant density functional theory Advanced predictive modelling of electric quadrupole transitions in even-even nuclei using various machine learning approaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1