Compiler-provenance identification in obfuscated binaries using vision transformers

IF 2 4区 医学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Forensic Science International-Digital Investigation Pub Date : 2024-07-01 DOI:10.1016/j.fsidi.2024.301764
Wasif Khan , Saed Alrabaee , Mousa Al-kfairy , Jie Tang , Kim-Kwang Raymond Choo
{"title":"Compiler-provenance identification in obfuscated binaries using vision transformers","authors":"Wasif Khan ,&nbsp;Saed Alrabaee ,&nbsp;Mousa Al-kfairy ,&nbsp;Jie Tang ,&nbsp;Kim-Kwang Raymond Choo","doi":"10.1016/j.fsidi.2024.301764","DOIUrl":null,"url":null,"abstract":"<div><p>Extracting compiler-provenance-related information (e.g., the source of a compiler, its version, its optimization settings, and compiler-related functions) is crucial for binary-analysis tasks such as function fingerprinting, detecting code clones, and determining authorship attribution. However, the presence of obfuscation techniques has complicated the efforts to automate such extraction. In this paper, we propose an efficient and resilient approach to provenance identification in obfuscated binaries using advanced pre-trained computer-vision models. To achieve this, we transform the program binaries into images and apply a two-layer approach for compiler and optimization prediction. Extensive results from experiments performed on a large-scale dataset show that the proposed method can achieve an accuracy of over 98 % for both obfuscated and deobfuscated binaries.</p></div>","PeriodicalId":48481,"journal":{"name":"Forensic Science International-Digital Investigation","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666281724000830/pdfft?md5=4be468a95e1def67152faeccf9135fb9&pid=1-s2.0-S2666281724000830-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Science International-Digital Investigation","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666281724000830","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Extracting compiler-provenance-related information (e.g., the source of a compiler, its version, its optimization settings, and compiler-related functions) is crucial for binary-analysis tasks such as function fingerprinting, detecting code clones, and determining authorship attribution. However, the presence of obfuscation techniques has complicated the efforts to automate such extraction. In this paper, we propose an efficient and resilient approach to provenance identification in obfuscated binaries using advanced pre-trained computer-vision models. To achieve this, we transform the program binaries into images and apply a two-layer approach for compiler and optimization prediction. Extensive results from experiments performed on a large-scale dataset show that the proposed method can achieve an accuracy of over 98 % for both obfuscated and deobfuscated binaries.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用视觉转换器识别混淆二进制文件中的编译器证明
提取编译器证明相关信息(如编译器的源代码、版本、优化设置和编译器相关函数)对于二元分析任务(如函数指纹识别、检测代码克隆和确定作者归属)至关重要。然而,混淆技术的存在使自动提取变得复杂。在本文中,我们提出了一种高效、灵活的方法,利用先进的预训练计算机视觉模型来识别混淆二进制文件中的出处。为此,我们将程序二进制文件转换为图像,并采用双层方法进行编译器和优化预测。在大规模数据集上进行的大量实验结果表明,所提出的方法对混淆和去混淆二进制文件的准确率都能达到 98% 以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.90
自引率
15.00%
发文量
87
审稿时长
76 days
期刊最新文献
Commentary:- Can I use that tool? Temporal metadata analysis: A learning classifier system approach Uncertainty and error in location traces Competence in digital forensics “What you say in the lab, stays in the lab”: A reflexive thematic analysis of current challenges and future directions of digital forensic investigations in the UK
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1