Lev V. Eppelbaum , Olga Khabarova , Michal Birkenfeld
{"title":"Advancing archaeo-geophysics through integrated informational-probabilistic techniques and remote sensing","authors":"Lev V. Eppelbaum , Olga Khabarova , Michal Birkenfeld","doi":"10.1016/j.jappgeo.2024.105437","DOIUrl":null,"url":null,"abstract":"<div><p>Recent studies demonstrate the effectiveness of integrated archaeo-geophysical tools in resolving various geological-environmental challenges. This involves combining geophysical methods in archaeological fieldwork or remote sensing methods for preliminary survey and analysis of archaeological sites, potentially enhanced by machine learning techniques to estimate object shapes and characteristics. This study highlights the potential of employing informational and probabilistic approaches as optimal tools for evaluating and integrating critical information for archaeological research. Our proposed procedure for assessing the reliability of tools or toolsets is based on improved methodologies utilizing conditional probability, which were suggested in previous authors' publications. We illustrate examples of combining remote sensing, known for its low cost, portability, and effectiveness in initial archaeological site identification, with machine learning methods to locate and discover new sites in archaeologically well-studied areas in Israel. Subsequently, we conduct an informational assessment of remote sensing data and propose steps to correlate this data with other geophysical information probabilistically.</p></div>","PeriodicalId":54882,"journal":{"name":"Journal of Applied Geophysics","volume":"227 ","pages":"Article 105437"},"PeriodicalIF":2.2000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Geophysics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926985124001538","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Recent studies demonstrate the effectiveness of integrated archaeo-geophysical tools in resolving various geological-environmental challenges. This involves combining geophysical methods in archaeological fieldwork or remote sensing methods for preliminary survey and analysis of archaeological sites, potentially enhanced by machine learning techniques to estimate object shapes and characteristics. This study highlights the potential of employing informational and probabilistic approaches as optimal tools for evaluating and integrating critical information for archaeological research. Our proposed procedure for assessing the reliability of tools or toolsets is based on improved methodologies utilizing conditional probability, which were suggested in previous authors' publications. We illustrate examples of combining remote sensing, known for its low cost, portability, and effectiveness in initial archaeological site identification, with machine learning methods to locate and discover new sites in archaeologically well-studied areas in Israel. Subsequently, we conduct an informational assessment of remote sensing data and propose steps to correlate this data with other geophysical information probabilistically.
期刊介绍:
The Journal of Applied Geophysics with its key objective of responding to pertinent and timely needs, places particular emphasis on methodological developments and innovative applications of geophysical techniques for addressing environmental, engineering, and hydrological problems. Related topical research in exploration geophysics and in soil and rock physics is also covered by the Journal of Applied Geophysics.