Rheological behavior predictions of non-Newtonian nanofluids via correlations and artificial neural network for thermal applications

IF 3 Q2 ENGINEERING, CHEMICAL Digital Chemical Engineering Pub Date : 2024-06-27 DOI:10.1016/j.dche.2024.100170
Nik Eirdhina Binti Nik Salimi , Suhaib Umer Ilyas , Syed Ali Ammar Taqvi , Nawal Noshad , Rashid Shamsuddin , Serene Sow Mun Lock , Aymn Abdulrahman
{"title":"Rheological behavior predictions of non-Newtonian nanofluids via correlations and artificial neural network for thermal applications","authors":"Nik Eirdhina Binti Nik Salimi ,&nbsp;Suhaib Umer Ilyas ,&nbsp;Syed Ali Ammar Taqvi ,&nbsp;Nawal Noshad ,&nbsp;Rashid Shamsuddin ,&nbsp;Serene Sow Mun Lock ,&nbsp;Aymn Abdulrahman","doi":"10.1016/j.dche.2024.100170","DOIUrl":null,"url":null,"abstract":"<div><p>Nanofluids possess enhanced viscous and thermal features that can be utilized to improve the heat transfer performance of several applications involving sustainable manufacturing and industrial ecology, such as in heating/cooling systems, electronics, transportation etc. Therefore, it is important to understand and optimize the flow pattern of these fluids. This research emphasizes the predictions of viscosity of water/ethylene-glycol (EG) based non-Newtonian nanofluids. Four experiment-based data sets are used to predict and validate the effective viscosity, i.e., Fe<sub>3</sub>O<sub>4</sub>-Ag/EG, MWCNT-alumina/water-EG, Fe<sub>3</sub>O<sub>4</sub>-Ag/water-EG, and MWCNT-SiO<sub>2</sub>/EG-water, via existing correlations and artificial neural network (ANN). The modeling is based on three input parameters, i.e., particle concentrations, temperatures, and shear rates, and one output parameter, i.e., viscosity. The predicted outcomes are compared to the three existing correlation structures. The error matrix consists of the coefficient of determination (R<sup>2</sup>), average absolute deviation (AAD %), the sum of squared error (SSE), that are employed to evaluate the performance of the model. Results from ANN are found to be more precise, with R<sup>2</sup> values greater than 0.99 for all datasets, compared to data fitting into existing correlations, in which Fe<sub>3</sub>O<sub>4</sub>-Ag/water-EG resulted in an R<sup>2</sup> value as low as 0.72, to determine the nanofluids’ effective viscosity.</p></div>","PeriodicalId":72815,"journal":{"name":"Digital Chemical Engineering","volume":"12 ","pages":"Article 100170"},"PeriodicalIF":3.0000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772508124000322/pdfft?md5=eae31bcfe40b1b35209f46d2429b6db6&pid=1-s2.0-S2772508124000322-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772508124000322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Nanofluids possess enhanced viscous and thermal features that can be utilized to improve the heat transfer performance of several applications involving sustainable manufacturing and industrial ecology, such as in heating/cooling systems, electronics, transportation etc. Therefore, it is important to understand and optimize the flow pattern of these fluids. This research emphasizes the predictions of viscosity of water/ethylene-glycol (EG) based non-Newtonian nanofluids. Four experiment-based data sets are used to predict and validate the effective viscosity, i.e., Fe3O4-Ag/EG, MWCNT-alumina/water-EG, Fe3O4-Ag/water-EG, and MWCNT-SiO2/EG-water, via existing correlations and artificial neural network (ANN). The modeling is based on three input parameters, i.e., particle concentrations, temperatures, and shear rates, and one output parameter, i.e., viscosity. The predicted outcomes are compared to the three existing correlation structures. The error matrix consists of the coefficient of determination (R2), average absolute deviation (AAD %), the sum of squared error (SSE), that are employed to evaluate the performance of the model. Results from ANN are found to be more precise, with R2 values greater than 0.99 for all datasets, compared to data fitting into existing correlations, in which Fe3O4-Ag/water-EG resulted in an R2 value as low as 0.72, to determine the nanofluids’ effective viscosity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过相关性和人工神经网络预测用于热应用的非牛顿纳米流体的流变行为
纳米流体具有增强的粘性和热特性,可用于改善涉及可持续制造和工业生态的多个应用领域的传热性能,如加热/冷却系统、电子、运输等。因此,了解和优化这些流体的流动模式非常重要。本研究侧重于预测水/乙二醇(EG)基非牛顿纳米流体的粘度。通过现有的相关性和人工神经网络 (ANN),使用四个基于实验的数据集来预测和验证有效粘度,即 Fe3O4-Ag/EG、MWCNT-氧化铝/水-EG、Fe3O4-Ag/水-EG 和 MWCNT-SiO2/EG-水。建模基于三个输入参数(即颗粒浓度、温度和剪切率)和一个输出参数(即粘度)。预测结果与现有的三种相关结构进行了比较。误差矩阵包括判定系数 (R2)、平均绝对偏差 (AAD%)、平方误差总和 (SSE),用于评估模型的性能。在确定纳米流体的有效粘度时,ANN 得出的结果更为精确,所有数据集的 R2 值均大于 0.99,相比之下,现有相关数据的拟合结果(Fe3O4-Ag/水-EG 得出的 R2 值低至 0.72)更为精确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
期刊最新文献
The trust region filter strategy: Survey of a rigorous approach for optimization with surrogate models Multi-agent distributed control of integrated process networks using an adaptive community detection approach Industrial data-driven machine learning soft sensing for optimal operation of etching tools Process integration technique for targeting carbon credit price subsidy Robust simulation and technical evaluation of large-scale gas oil hydrocracking process via extended water-energy-product (E-WEP) analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1