Comparative studies of machine learning models for predicting higher heating values of biomass

IF 3 Q2 ENGINEERING, CHEMICAL Digital Chemical Engineering Pub Date : 2024-06-29 DOI:10.1016/j.dche.2024.100159
Adekunle A. Adeleke , Adeyinka Adedigba , Steve A. Adeshina , Peter P. Ikubanni , Mohammed S. Lawal , Adebayo I. Olosho , Halima S. Yakubu , Temitayo S. Ogedengbe , Petrus Nzerem , Jude A. Okolie
{"title":"Comparative studies of machine learning models for predicting higher heating values of biomass","authors":"Adekunle A. Adeleke ,&nbsp;Adeyinka Adedigba ,&nbsp;Steve A. Adeshina ,&nbsp;Peter P. Ikubanni ,&nbsp;Mohammed S. Lawal ,&nbsp;Adebayo I. Olosho ,&nbsp;Halima S. Yakubu ,&nbsp;Temitayo S. Ogedengbe ,&nbsp;Petrus Nzerem ,&nbsp;Jude A. Okolie","doi":"10.1016/j.dche.2024.100159","DOIUrl":null,"url":null,"abstract":"<div><p>This study addresses the challenge of efficiently determining the higher heating value (HHV) of biomass, a crucial parameter in large-scale biomass-based energy systems. The conventional method of measuring HHV using an oxygen bomb calorimeter is time-consuming, expensive, and less accessible to researchers, particularly in developing nations. To overcome these limitations, we employed four machine learning (ML) models, namely Random Forest (RF), Decision Tree (DT), Support Vector Machine (SVM), and Extreme Gradient Boosting (XGBoost). These models were developed by using proximate and ultimate analysis parameters as input features. Up to 200 datasets were compiled from literature and used for the ML models. Our results demonstrate the effectiveness of all ML models in accurately predicting the HHV of biomass materials. Notably, the XGBoost model exhibited superior performance with the highest R-squared (R<sup>2</sup>) values for both training (0.9683) and test datasets (0.7309), along with the lowest root mean squared error (RSME) of 0.3558. Key influential input features identified for HHV prediction include carbon (C), volatile matter (Vm), ash, and hydrogen (H). Consequently, this research provides a reliable alternative for predicting HHV without the need for costly and time-intensive experimental measurements, facilitating broader accessibility in biomass energy research.</p></div>","PeriodicalId":72815,"journal":{"name":"Digital Chemical Engineering","volume":"12 ","pages":"Article 100159"},"PeriodicalIF":3.0000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772508124000218/pdfft?md5=349137b26dd511ecd91728e740d79e7c&pid=1-s2.0-S2772508124000218-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772508124000218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study addresses the challenge of efficiently determining the higher heating value (HHV) of biomass, a crucial parameter in large-scale biomass-based energy systems. The conventional method of measuring HHV using an oxygen bomb calorimeter is time-consuming, expensive, and less accessible to researchers, particularly in developing nations. To overcome these limitations, we employed four machine learning (ML) models, namely Random Forest (RF), Decision Tree (DT), Support Vector Machine (SVM), and Extreme Gradient Boosting (XGBoost). These models were developed by using proximate and ultimate analysis parameters as input features. Up to 200 datasets were compiled from literature and used for the ML models. Our results demonstrate the effectiveness of all ML models in accurately predicting the HHV of biomass materials. Notably, the XGBoost model exhibited superior performance with the highest R-squared (R2) values for both training (0.9683) and test datasets (0.7309), along with the lowest root mean squared error (RSME) of 0.3558. Key influential input features identified for HHV prediction include carbon (C), volatile matter (Vm), ash, and hydrogen (H). Consequently, this research provides a reliable alternative for predicting HHV without the need for costly and time-intensive experimental measurements, facilitating broader accessibility in biomass energy research.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测生物质较高热值的机器学习模型比较研究
本研究解决了有效测定生物质高热值(HHV)的难题,这是大规模生物质能源系统中的一个关键参数。使用氧弹热量计测量 HHV 的传统方法耗时长、成本高,而且研究人员较难获得,尤其是在发展中国家。为了克服这些局限性,我们采用了四种机器学习(ML)模型,即随机森林(RF)、决策树(DT)、支持向量机(SVM)和极梯度提升(XGBoost)。这些模型是利用近似和最终分析参数作为输入特征而开发的。我们从文献中汇编了多达 200 个数据集,并将其用于 ML 模型。结果表明,所有 ML 模型在准确预测生物质材料的 HHV 方面都非常有效。值得注意的是,XGBoost 模型表现出卓越的性能,在训练数据集(0.9683)和测试数据集(0.7309)上的 R 平方(R2)值最高,均方根误差(RSME)最低,为 0.3558。对 HHV 预测有影响的关键输入特征包括碳(C)、挥发性物质(Vm)、灰分和氢(H)。因此,这项研究为预测 HHV 提供了一种可靠的替代方法,无需进行昂贵且耗时的实验测量,从而为生物质能源研究提供了更广泛的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
期刊最新文献
The trust region filter strategy: Survey of a rigorous approach for optimization with surrogate models Multi-agent distributed control of integrated process networks using an adaptive community detection approach Industrial data-driven machine learning soft sensing for optimal operation of etching tools Process integration technique for targeting carbon credit price subsidy Robust simulation and technical evaluation of large-scale gas oil hydrocracking process via extended water-energy-product (E-WEP) analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1