Estimating and displaying population attributable fractions using the R package: graphPAF.

IF 7.7 1区 医学 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH European Journal of Epidemiology Pub Date : 2024-07-01 Epub Date: 2024-07-06 DOI:10.1007/s10654-024-01129-1
John Ferguson, Maurice O'Connell
{"title":"Estimating and displaying population attributable fractions using the R package: graphPAF.","authors":"John Ferguson, Maurice O'Connell","doi":"10.1007/s10654-024-01129-1","DOIUrl":null,"url":null,"abstract":"<p><p>Here we introduce graphPAF, a comprehensive R package designed for estimation, inference and display of population attributable fractions (PAF) and impact fractions. In addition to allowing inference for standard population attributable fractions and impact fractions, graphPAF facilitates display of attributable fractions over multiple risk factors using fan-plots and nomograms, calculations of attributable fractions for continuous exposures, inference for attributable fractions appropriate for specific risk factor <math><mo>→</mo></math> mediator <math><mo>→</mo></math> outcome pathways (pathway-specific attributable fractions) and Bayesian network-based calculations and inference for joint, sequential and average population attributable fractions in multi-risk factor scenarios. This article can be used as both a guide to the theory of attributable fraction estimation and a tutorial regarding how to use graphPAF in practical examples.</p>","PeriodicalId":11907,"journal":{"name":"European Journal of Epidemiology","volume":" ","pages":"715-742"},"PeriodicalIF":7.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11343908/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10654-024-01129-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

Abstract

Here we introduce graphPAF, a comprehensive R package designed for estimation, inference and display of population attributable fractions (PAF) and impact fractions. In addition to allowing inference for standard population attributable fractions and impact fractions, graphPAF facilitates display of attributable fractions over multiple risk factors using fan-plots and nomograms, calculations of attributable fractions for continuous exposures, inference for attributable fractions appropriate for specific risk factor mediator outcome pathways (pathway-specific attributable fractions) and Bayesian network-based calculations and inference for joint, sequential and average population attributable fractions in multi-risk factor scenarios. This article can be used as both a guide to the theory of attributable fraction estimation and a tutorial regarding how to use graphPAF in practical examples.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用 R 软件包 graphPAF 估算和显示人口可归因分数。
这里我们介绍 graphPAF,它是一个综合性 R 软件包,用于估计、推断和显示人口可归因分数(PAF)和影响分数。除了可以推断标准的人群可归因分数和影响分数外,graphPAF 还便于使用扇形图和提名图显示多种风险因素的可归因分数,计算连续暴露的可归因分数,推断适合特定风险因素→介导因素→结果途径的可归因分数(途径特异性可归因分数),以及基于贝叶斯网络计算和推断多风险因素情况下的联合、连续和平均人群可归因分数。本文既可作为归因分数估计理论的指南,也可作为如何在实际例子中使用 graphPAF 的教程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
European Journal of Epidemiology
European Journal of Epidemiology 医学-公共卫生、环境卫生与职业卫生
CiteScore
21.40
自引率
1.50%
发文量
109
审稿时长
6-12 weeks
期刊介绍: The European Journal of Epidemiology, established in 1985, is a peer-reviewed publication that provides a platform for discussions on epidemiology in its broadest sense. It covers various aspects of epidemiologic research and statistical methods. The journal facilitates communication between researchers, educators, and practitioners in epidemiology, including those in clinical and community medicine. Contributions from diverse fields such as public health, preventive medicine, clinical medicine, health economics, and computational biology and data science, in relation to health and disease, are encouraged. While accepting submissions from all over the world, the journal particularly emphasizes European topics relevant to epidemiology. The published articles consist of empirical research findings, developments in methodology, and opinion pieces.
期刊最新文献
A municipality-specific analysis to investigate persistent increased incidence rates of childhood leukaemia near the nuclear power plant of Krümmel in Germany Pesticides and risk of pancreatic adenocarcinoma in France: a nationwide spatiotemporal ecological study between 2011 and 2021 Anders Ekbom: Swedish physician and epidemiologist 1947–2024 Updated findings on temporal variation in radiation-effects on cancer mortality in an international cohort of nuclear workers (INWORKS) Placental abruption and perinatal mortality in twins: novel insight into management at preterm versus term gestations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1