High-intensity Focused Ultrasound-A New Choice to Conduct Pulmonary Artery Denervation.

IF 2.4 3区 医学 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS Journal of Cardiovascular Translational Research Pub Date : 2024-12-01 Epub Date: 2024-07-06 DOI:10.1007/s12265-024-10531-9
Yonghui Xie, Taoyue Yao, Xiaogang Zhu, Fan Yang, Haoqin Fan, Shirui Cao, Huaiyang Chen, Manzhen Liao, Yuanxi Xia, Jinqiao Liu, Zhenghui Xiao, Zhou Yang, Yunbin Xiao
{"title":"High-intensity Focused Ultrasound-A New Choice to Conduct Pulmonary Artery Denervation.","authors":"Yonghui Xie, Taoyue Yao, Xiaogang Zhu, Fan Yang, Haoqin Fan, Shirui Cao, Huaiyang Chen, Manzhen Liao, Yuanxi Xia, Jinqiao Liu, Zhenghui Xiao, Zhou Yang, Yunbin Xiao","doi":"10.1007/s12265-024-10531-9","DOIUrl":null,"url":null,"abstract":"<p><p>This research aimed to explore whether high-intensity focused ultrasound (HIFU) could conduct pulmonary artery denervation (PADN). HIFU was performed in pulmonary arteries of 6 normotensive rabbits at dose of 250W, 6 times for each rabbit, and an additional 6 rabbits served as controls. Then ATEPH was induced in both groups by intravenous infusion of autogeneic thrombus. Hemodynamics and ultrasonography parameters were measured by right heart catheter and echocardiography pre- and post-establishment of ATEPH models in both groups. Histological analysis and immunohistochemistry of tyrosine hydroxylase (TH) were also performed. After PADN procedures, 5 rabbits were successfully conducted PADN, of which ablation zone was also observed in right auricle or right lung in 4 rabbits. Ablation zone was detected only in right lung in 1 rabbit. Compared with control group, milder right heart hemodynamic changes were found in PADN group, accompanied by improved ultrasound parameters in PADN group. HIFU can acutly damage SNs around pulmonary artery successfully, which may be a new choice to conduct PADN. However, the accuracy of HIFU with PADN needs to be improved.</p>","PeriodicalId":15224,"journal":{"name":"Journal of Cardiovascular Translational Research","volume":" ","pages":"1353-1364"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11635049/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cardiovascular Translational Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12265-024-10531-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This research aimed to explore whether high-intensity focused ultrasound (HIFU) could conduct pulmonary artery denervation (PADN). HIFU was performed in pulmonary arteries of 6 normotensive rabbits at dose of 250W, 6 times for each rabbit, and an additional 6 rabbits served as controls. Then ATEPH was induced in both groups by intravenous infusion of autogeneic thrombus. Hemodynamics and ultrasonography parameters were measured by right heart catheter and echocardiography pre- and post-establishment of ATEPH models in both groups. Histological analysis and immunohistochemistry of tyrosine hydroxylase (TH) were also performed. After PADN procedures, 5 rabbits were successfully conducted PADN, of which ablation zone was also observed in right auricle or right lung in 4 rabbits. Ablation zone was detected only in right lung in 1 rabbit. Compared with control group, milder right heart hemodynamic changes were found in PADN group, accompanied by improved ultrasound parameters in PADN group. HIFU can acutly damage SNs around pulmonary artery successfully, which may be a new choice to conduct PADN. However, the accuracy of HIFU with PADN needs to be improved.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高强度聚焦超声--进行肺动脉去神经支配的新选择
本研究旨在探讨高强度聚焦超声(HIFU)能否进行肺动脉去神经支配(PADN)。对 6 只血压正常的兔子的肺动脉进行高强度聚焦超声治疗,每只兔子治疗 6 次,每次剂量为 250 瓦,另外 6 只兔子作为对照组。然后通过静脉注射自体血栓诱导两组家兔发生 ATEPH。通过右心导管和超声心动图测量两组兔子在建立ATEPH模型前后的血流动力学和超声参数。此外,还进行了组织学分析和酪氨酸羟化酶(TH)免疫组化。5只兔子成功进行了PADN手术,其中4只兔子的右耳或右肺也观察到了消融区。1 只兔子仅在右肺发现了消融区。与对照组相比,PADN 组的右心血流动力学变化较轻,超声参数也有所改善。HIFU能成功地损伤肺动脉周围的SN,可能是进行PADN的新选择。然而,HIFU配合PADN的准确性还有待提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Cardiovascular Translational Research
Journal of Cardiovascular Translational Research CARDIAC & CARDIOVASCULAR SYSTEMS-MEDICINE, RESEARCH & EXPERIMENTAL
CiteScore
6.10
自引率
2.90%
发文量
148
审稿时长
6-12 weeks
期刊介绍: Journal of Cardiovascular Translational Research (JCTR) is a premier journal in cardiovascular translational research. JCTR is the journal of choice for authors seeking the broadest audience for emerging technologies, therapies and diagnostics, pre-clinical research, and first-in-man clinical trials. JCTR''s intent is to provide a forum for critical evaluation of the novel cardiovascular science, to showcase important and clinically relevant aspects of the new research, as well as to discuss the impediments that may need to be overcome during the translation to patient care.
期刊最新文献
Machine Learning Model for Risk Prediction of Prolonged Intensive Care Unit in Patients Receiving Intra-aortic Balloon Pump Therapy during Coronary Artery Bypass Graft Surgery. NAT10 Modulates Atherosclerosis Progression Mediated by Macrophage Polarization Through Regulating ac4C Modification of TLR9. Associations of Blood Lipid-Related Polygenic Scores, Lifestyle Factors and Their Combined Effects with Risk of Coronary Artery Disease in the UK Biobank Cohort. Prediction of Major Adverse Limb Events in Females with Peripheral Artery Disease using Blood-Based Biomarkers and Clinical Features. Endothelial Cell-Derived Extracellular Vesicles Allow to Differentiate Between Various Endotypes of INOCA: A Multicentre, Prospective, Cohort Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1