Plasma Biomarker Screening Based on Proteomic Signature of Patients with Resistant Hypertension.

IF 2.4 3区 医学 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS Journal of Cardiovascular Translational Research Pub Date : 2024-12-01 Epub Date: 2024-07-06 DOI:10.1007/s12265-024-10541-7
Jianmin Du, Xiaoqian Yu, Wenyu Zhang, Xinghai Zhang, Hengli Zhao, Rui Xu, Qing Wen
{"title":"Plasma Biomarker Screening Based on Proteomic Signature of Patients with Resistant Hypertension.","authors":"Jianmin Du, Xiaoqian Yu, Wenyu Zhang, Xinghai Zhang, Hengli Zhao, Rui Xu, Qing Wen","doi":"10.1007/s12265-024-10541-7","DOIUrl":null,"url":null,"abstract":"<p><p>Resistant hypertension (RH) poses a significant health challenge, yet its underlying pathogenesis remains unclear. This study employs untargeted proteomic techniques to analyze the plasma of patients with RH and controlled hypertension (CH), identifying 157 differentially expressed proteins, with TGFB1 emerging as a key candidate. Through gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, Protein-Protein Interaction Networks (PPI) topological analysis, TGFB1's differential regulation in RH is established. ELISA verification solidifies TGFB1's role, marking it as a potential biological target for early RH diagnosis and treatment. The study underscores the importance of proteomic approaches in enhancing our understanding of RH and improving therapeutic strategies. These findings carry implications for advancing RH diagnostics and treatment modalities, addressing a critical gap in current knowledge.</p>","PeriodicalId":15224,"journal":{"name":"Journal of Cardiovascular Translational Research","volume":" ","pages":"1286-1294"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cardiovascular Translational Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12265-024-10541-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Resistant hypertension (RH) poses a significant health challenge, yet its underlying pathogenesis remains unclear. This study employs untargeted proteomic techniques to analyze the plasma of patients with RH and controlled hypertension (CH), identifying 157 differentially expressed proteins, with TGFB1 emerging as a key candidate. Through gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, Protein-Protein Interaction Networks (PPI) topological analysis, TGFB1's differential regulation in RH is established. ELISA verification solidifies TGFB1's role, marking it as a potential biological target for early RH diagnosis and treatment. The study underscores the importance of proteomic approaches in enhancing our understanding of RH and improving therapeutic strategies. These findings carry implications for advancing RH diagnostics and treatment modalities, addressing a critical gap in current knowledge.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于难治性高血压患者蛋白质组特征的血浆生物标志物筛查
耐药性高血压(RH)对健康构成了重大挑战,但其潜在的发病机制仍不清楚。本研究采用非靶向蛋白质组学技术分析了耐药性高血压(RH)和控制性高血压(CH)患者的血浆,发现了157种差异表达的蛋白质,其中TGFB1是关键的候选蛋白。通过基因本体(GO)、京都基因和基因组百科全书(KEGG)富集、蛋白质-蛋白质相互作用网络(PPI)拓扑分析,确定了 TGFB1 在 RH 中的差异调控。ELISA 验证巩固了 TGFB1 的作用,使其成为早期 RH 诊断和治疗的潜在生物学靶标。这项研究强调了蛋白质组学方法在增进我们对 RH 的了解和改进治疗策略方面的重要性。这些发现对推进 RH 诊断和治疗模式具有重要意义,弥补了当前知识的一个关键缺口。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Cardiovascular Translational Research
Journal of Cardiovascular Translational Research CARDIAC & CARDIOVASCULAR SYSTEMS-MEDICINE, RESEARCH & EXPERIMENTAL
CiteScore
6.10
自引率
2.90%
发文量
148
审稿时长
6-12 weeks
期刊介绍: Journal of Cardiovascular Translational Research (JCTR) is a premier journal in cardiovascular translational research. JCTR is the journal of choice for authors seeking the broadest audience for emerging technologies, therapies and diagnostics, pre-clinical research, and first-in-man clinical trials. JCTR''s intent is to provide a forum for critical evaluation of the novel cardiovascular science, to showcase important and clinically relevant aspects of the new research, as well as to discuss the impediments that may need to be overcome during the translation to patient care.
期刊最新文献
Machine Learning Model for Risk Prediction of Prolonged Intensive Care Unit in Patients Receiving Intra-aortic Balloon Pump Therapy during Coronary Artery Bypass Graft Surgery. NAT10 Modulates Atherosclerosis Progression Mediated by Macrophage Polarization Through Regulating ac4C Modification of TLR9. Associations of Blood Lipid-Related Polygenic Scores, Lifestyle Factors and Their Combined Effects with Risk of Coronary Artery Disease in the UK Biobank Cohort. Prediction of Major Adverse Limb Events in Females with Peripheral Artery Disease using Blood-Based Biomarkers and Clinical Features. Endothelial Cell-Derived Extracellular Vesicles Allow to Differentiate Between Various Endotypes of INOCA: A Multicentre, Prospective, Cohort Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1