H.Evren Boran , Halil Can Alaydin , Ilker Arslan , Ozlem Kurtkaya Kocak , Hasan Kılınc , Bulent Cengiz
{"title":"Exploring the effect of the nerve conduction distance on the MScanFit method ofmotor unit number estimation (MUNE)","authors":"H.Evren Boran , Halil Can Alaydin , Ilker Arslan , Ozlem Kurtkaya Kocak , Hasan Kılınc , Bulent Cengiz","doi":"10.1016/j.neucli.2024.102991","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>MScanFit motor unit number estimation (MUNE) is a sensitive method for detecting motor unit loss and has demonstrated high reproducibility in various settings. In this study, our aim was to assess the outputs of this method when the nerve conduction distance is increased.</p></div><div><h3>Methods</h3><p>MScanFit recordings were obtained from the abductor digiti minimi muscle of 20 healthy volunteers. To evaluate the effect of nerve conduction distance, the ulnar nerve was stimulated from the wrist and elbow respectively. Reproducibility of MUNE, compound muscle action potential (CMAP), and other motor unit parameters were assessed using intraclass correlation coefficients (ICCs).</p></div><div><h3>Results</h3><p>Motor unit numbers obtained from stimulation at the wrist and elbow did not significantly differ and exhibited strong consistency in the ICC test (120.3 ± 23.7 vs. 118.5 ± 27.9, <em>p</em> > 0.05, ICC: 0.88). Similar repeatability values were noted for other parameters. However, the Largest Unit (%) displayed notable variability between the two regions and exhibited a negative correlation with nerve conduction distance.</p></div><div><h3>Conclusion</h3><p>Our findings indicate that MScanFit can consistently calculate motor unit numbers and most of its outputs without substantial influence from nerve conduction distance. Exploring MScanFit's capabilities in various settings could enhance our understanding of its strengths and limitations for extensive use in clinical practice.</p></div>","PeriodicalId":19134,"journal":{"name":"Neurophysiologie Clinique/Clinical Neurophysiology","volume":"54 5","pages":"Article 102991"},"PeriodicalIF":2.7000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurophysiologie Clinique/Clinical Neurophysiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0987705324000492","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
MScanFit motor unit number estimation (MUNE) is a sensitive method for detecting motor unit loss and has demonstrated high reproducibility in various settings. In this study, our aim was to assess the outputs of this method when the nerve conduction distance is increased.
Methods
MScanFit recordings were obtained from the abductor digiti minimi muscle of 20 healthy volunteers. To evaluate the effect of nerve conduction distance, the ulnar nerve was stimulated from the wrist and elbow respectively. Reproducibility of MUNE, compound muscle action potential (CMAP), and other motor unit parameters were assessed using intraclass correlation coefficients (ICCs).
Results
Motor unit numbers obtained from stimulation at the wrist and elbow did not significantly differ and exhibited strong consistency in the ICC test (120.3 ± 23.7 vs. 118.5 ± 27.9, p > 0.05, ICC: 0.88). Similar repeatability values were noted for other parameters. However, the Largest Unit (%) displayed notable variability between the two regions and exhibited a negative correlation with nerve conduction distance.
Conclusion
Our findings indicate that MScanFit can consistently calculate motor unit numbers and most of its outputs without substantial influence from nerve conduction distance. Exploring MScanFit's capabilities in various settings could enhance our understanding of its strengths and limitations for extensive use in clinical practice.
期刊介绍:
Neurophysiologie Clinique / Clinical Neurophysiology (NCCN) is the official organ of the French Society of Clinical Neurophysiology (SNCLF). This journal is published 6 times a year, and is aimed at an international readership, with articles written in English. These can take the form of original research papers, comprehensive review articles, viewpoints, short communications, technical notes, editorials or letters to the Editor. The theme is the neurophysiological investigation of central or peripheral nervous system or muscle in healthy humans or patients. The journal focuses on key areas of clinical neurophysiology: electro- or magneto-encephalography, evoked potentials of all modalities, electroneuromyography, sleep, pain, posture, balance, motor control, autonomic nervous system, cognition, invasive and non-invasive neuromodulation, signal processing, bio-engineering, functional imaging.