Maximilian Freudenberg, Sebastian Schnell, Paul Magdon
{"title":"A Sentinel-2 Machine Learning Dataset for Tree Species Classification in Germany","authors":"Maximilian Freudenberg, Sebastian Schnell, Paul Magdon","doi":"10.5194/essd-2024-206","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> We present a machine learning dataset for tree species classification in Sentinel-2 satellite image time series of bottom of atmosphere reflectance. The dataset is based on the German national forest inventory of 2012, as well as analysis ready satellite imagery computed using the FORCE processing pipeline. From the national forest inventory data, we extracted the tree positions, filtered 387 775 trees in the upper canopy layer and automatically extracted the corresponding bottom of atmosphere reflectance time series from Sentinel-2 L2A images. These time series are labeled with the corresponding tree species, which allows pixel-wise classification tasks. Furthermore, we provide auxiliary information such as the approximate tree position, the year of possible disturbance events or the diameter at breast height. Temporally, the dataset spans the years from July 2015 to end of October 2022 with ca. 75.3 million data points for trees of 51 species and species groups, as well as 13.8 million observations for non-tree background. Spatially, it covers entire Germany. The dataset is available under following DOI (Freudenberg et al., 2024): https://doi.org/10.3220/DATA20240402122351-0","PeriodicalId":48747,"journal":{"name":"Earth System Science Data","volume":"55 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth System Science Data","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/essd-2024-206","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. We present a machine learning dataset for tree species classification in Sentinel-2 satellite image time series of bottom of atmosphere reflectance. The dataset is based on the German national forest inventory of 2012, as well as analysis ready satellite imagery computed using the FORCE processing pipeline. From the national forest inventory data, we extracted the tree positions, filtered 387 775 trees in the upper canopy layer and automatically extracted the corresponding bottom of atmosphere reflectance time series from Sentinel-2 L2A images. These time series are labeled with the corresponding tree species, which allows pixel-wise classification tasks. Furthermore, we provide auxiliary information such as the approximate tree position, the year of possible disturbance events or the diameter at breast height. Temporally, the dataset spans the years from July 2015 to end of October 2022 with ca. 75.3 million data points for trees of 51 species and species groups, as well as 13.8 million observations for non-tree background. Spatially, it covers entire Germany. The dataset is available under following DOI (Freudenberg et al., 2024): https://doi.org/10.3220/DATA20240402122351-0
Earth System Science DataGEOSCIENCES, MULTIDISCIPLINARYMETEOROLOGY-METEOROLOGY & ATMOSPHERIC SCIENCES
CiteScore
18.00
自引率
5.30%
发文量
231
审稿时长
35 weeks
期刊介绍:
Earth System Science Data (ESSD) is an international, interdisciplinary journal that publishes articles on original research data in order to promote the reuse of high-quality data in the field of Earth system sciences. The journal welcomes submissions of original data or data collections that meet the required quality standards and have the potential to contribute to the goals of the journal. It includes sections dedicated to regular-length articles, brief communications (such as updates to existing data sets), commentaries, review articles, and special issues. ESSD is abstracted and indexed in several databases, including Science Citation Index Expanded, Current Contents/PCE, Scopus, ADS, CLOCKSS, CNKI, DOAJ, EBSCO, Gale/Cengage, GoOA (CAS), and Google Scholar, among others.