MIMO Integrated Sensing and Communication Exploiting Prior Information

Chan Xu;Shuowen Zhang
{"title":"MIMO Integrated Sensing and Communication Exploiting Prior Information","authors":"Chan Xu;Shuowen Zhang","doi":"10.1109/JSAC.2024.3413972","DOIUrl":null,"url":null,"abstract":"In this paper, we study a multiple-input multiple-output (MIMO) integrated sensing and communication (ISAC) system where one multi-antenna base station (BS) sends information to a user with multiple antennas in the downlink and simultaneously senses the location parameter of a target based on its reflected echo signals received back at the BS receive antennas. We focus on the case where the location parameter to be sensed is unknown and random, for which the prior distribution information is available for exploitation. First, we propose to adopt the posterior Cramér-Rao bound (PCRB) as the sensing performance metric with prior information, which quantifies a lower bound of the mean-squared error (MSE). Since the PCRB is in a complicated form, we derive a tight upper bound of it to draw more insights. Moreover, we analytically show that by exploiting the prior distribution information, the PCRB is always no larger than the CRB averaged over random location realizations without prior information exploitation. Next, we formulate the transmit covariance matrix optimization problem to minimize the sensing PCRB under a communication rate constraint. We obtain the optimal solution and derive useful properties on its rank. Then, by considering the derived PCRB upper bound as the objective function, we propose a low-complexity suboptimal solution in semi-closed form. Numerical results demonstrate the effectiveness of our proposed designs in MIMO ISAC systems exploiting prior information.","PeriodicalId":73294,"journal":{"name":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","volume":"42 9","pages":"2306-2321"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10584278/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study a multiple-input multiple-output (MIMO) integrated sensing and communication (ISAC) system where one multi-antenna base station (BS) sends information to a user with multiple antennas in the downlink and simultaneously senses the location parameter of a target based on its reflected echo signals received back at the BS receive antennas. We focus on the case where the location parameter to be sensed is unknown and random, for which the prior distribution information is available for exploitation. First, we propose to adopt the posterior Cramér-Rao bound (PCRB) as the sensing performance metric with prior information, which quantifies a lower bound of the mean-squared error (MSE). Since the PCRB is in a complicated form, we derive a tight upper bound of it to draw more insights. Moreover, we analytically show that by exploiting the prior distribution information, the PCRB is always no larger than the CRB averaged over random location realizations without prior information exploitation. Next, we formulate the transmit covariance matrix optimization problem to minimize the sensing PCRB under a communication rate constraint. We obtain the optimal solution and derive useful properties on its rank. Then, by considering the derived PCRB upper bound as the objective function, we propose a low-complexity suboptimal solution in semi-closed form. Numerical results demonstrate the effectiveness of our proposed designs in MIMO ISAC systems exploiting prior information.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用先验信息的 MIMO 综合传感与通信
本文研究了一个多输入多输出(MIMO)集成传感与通信(ISAC)系统,在该系统中,一个多天线基站(BS)在下行链路中通过多个天线向用户发送信息,同时根据基站接收天线接收到的目标反射回波信号来感知目标的位置参数。我们将重点放在要感知的位置参数是未知和随机的情况下,对于这种情况,可以利用先验分布信息。首先,我们建议采用后验克拉梅尔-拉奥约束(PCRB)作为具有先验信息的传感性能指标,它量化了均方误差(MSE)的下限。由于 PCRB 的形式比较复杂,我们推导出了一个严格的上界,以获得更多的启示。此外,我们通过分析表明,利用先验分布信息,PCRB 总是不大于不利用先验信息的随机位置实现的 CRB 平均值。接下来,我们提出了发射协方差矩阵优化问题,以在通信速率约束下最小化传感 PCRB。我们得到了最优解,并推导出其秩的有用属性。然后,通过将推导出的 PCRB 上限视为目标函数,我们提出了一种半封闭形式的低复杂度次优解。数值结果证明了我们提出的设计方案在利用先验信息的多输入多输出 ISAC 系统中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents IEEE Journal on Selected Areas in Communications Publication Information Guest Editorial Integrated Ground-Air-Space Wireless Networks for 6G Mobile—Part I IEEE Communications Society Information IEEE Open Access Publishing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1