Degradation index‐based prediction for remaining useful life using multivariate sensor data

IF 2.2 3区 工程技术 Q3 ENGINEERING, INDUSTRIAL Quality and Reliability Engineering International Pub Date : 2024-07-06 DOI:10.1002/qre.3615
Wenda Kang, Geurt Jongbloed, Yubin Tian, Piao Chen
{"title":"Degradation index‐based prediction for remaining useful life using multivariate sensor data","authors":"Wenda Kang, Geurt Jongbloed, Yubin Tian, Piao Chen","doi":"10.1002/qre.3615","DOIUrl":null,"url":null,"abstract":"The prediction of remaining useful life (RUL) is a critical component of prognostic and health management for industrial systems. In recent decades, there has been a surge of interest in RUL prediction based on degradation data of a well‐defined degradation index (DI). However, in many real‐world applications, the DI may not be readily available and must be constructed from complex source data, rendering many existing methods inapplicable. Motivated by multivariate sensor data from industrial induction motors, this paper proposes a novel prognostic framework that develops a nonlinear DI, serving as an ensemble of representative features, and employs a similarity‐based method for RUL prediction. The proposed framework enables online prediction of RUL by dynamically updating information from the in‐service unit. Simulation studies and a case study on three‐phase industrial induction motors demonstrate that the proposed framework can effectively extract reliability information from various channels and predict RUL with high accuracy.","PeriodicalId":56088,"journal":{"name":"Quality and Reliability Engineering International","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quality and Reliability Engineering International","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/qre.3615","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

Abstract

The prediction of remaining useful life (RUL) is a critical component of prognostic and health management for industrial systems. In recent decades, there has been a surge of interest in RUL prediction based on degradation data of a well‐defined degradation index (DI). However, in many real‐world applications, the DI may not be readily available and must be constructed from complex source data, rendering many existing methods inapplicable. Motivated by multivariate sensor data from industrial induction motors, this paper proposes a novel prognostic framework that develops a nonlinear DI, serving as an ensemble of representative features, and employs a similarity‐based method for RUL prediction. The proposed framework enables online prediction of RUL by dynamically updating information from the in‐service unit. Simulation studies and a case study on three‐phase industrial induction motors demonstrate that the proposed framework can effectively extract reliability information from various channels and predict RUL with high accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用多变量传感器数据,基于退化指数预测剩余使用寿命
剩余使用寿命(RUL)预测是工业系统预报和健康管理的重要组成部分。近几十年来,人们对基于定义明确的降解指数(DI)的降解数据进行剩余使用寿命预测的兴趣日益高涨。然而,在许多实际应用中,降解指数可能不是现成的,必须从复杂的源数据中构建,这使得许多现有方法无法应用。受工业感应电机多变量传感器数据的启发,本文提出了一个新颖的预报框架,该框架开发了一个非线性 DI,作为代表性特征的集合,并采用基于相似性的方法进行 RUL 预测。该框架通过动态更新在役机组的信息,实现了 RUL 的在线预测。对三相工业感应电动机的仿真研究和案例研究表明,所提出的框架能有效地从各种渠道提取可靠性信息,并高精度地预测 RUL。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.90
自引率
21.70%
发文量
181
审稿时长
6 months
期刊介绍: Quality and Reliability Engineering International is a journal devoted to practical engineering aspects of quality and reliability. A refereed technical journal published eight times per year, it covers the development and practical application of existing theoretical methods, research and industrial practices. Articles in the journal will be concerned with case studies, tutorial-type reviews and also with applications of new or well-known theory to the solution of actual quality and reliability problems in engineering. Papers describing the use of mathematical and statistical tools to solve real life industrial problems are encouraged, provided that the emphasis is placed on practical applications and demonstrated case studies. The scope of the journal is intended to include components, physics of failure, equipment and systems from the fields of electronic, electrical, mechanical and systems engineering. The areas of communications, aerospace, automotive, railways, shipboard equipment, control engineering and consumer products are all covered by the journal. Quality and reliability of hardware as well as software are covered. Papers on software engineering and its impact on product quality and reliability are encouraged. The journal will also cover the management of quality and reliability in the engineering industry. Special issues on a variety of key topics are published every year and contribute to the enhancement of Quality and Reliability Engineering International as a major reference in its field.
期刊最新文献
A probabilistic uncertain linguistic approach for FMEA‐based risk assessment A resilient S2 monitoring chart with novel outlier detectors Dynamic predictive maintenance strategy for multi‐component system based on LSTM and hierarchical clustering Monitoring defects on products' surface by incorporating scan statistics into process monitoring procedures Enhanced health states recognition for electric rudder system using optimized twin support vector machine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1