Jiantai Wang, Xiaobing Ma, Kaiye Gao, Yu Zhao, Li Yang
{"title":"Condition‐based maintenance management for two‐stage continuous deterioration with two‐dimensional inspection errors","authors":"Jiantai Wang, Xiaobing Ma, Kaiye Gao, Yu Zhao, Li Yang","doi":"10.1002/qre.3613","DOIUrl":null,"url":null,"abstract":"Inspections often perform imperfect outcomes during maintenance processes owing to human errors, management issues and other limitations. In particular, such imperfection affects the maintenance management of multistage deterioration significantly due to both false state identification and measurement errors, whose quantitative analysis, however, is seldom reported in the literature. To fill these gaps, this paper devises a condition‐based maintenance management strategy oriented to two‐stage continuous degradation under two‐dimensional inspection imperfection. Specifically, a threshold‐based replacement is executed under the normal‐working state if the detected degradation value exceeds the preset limit; additionally, preventive replacement is immediately performed once the defective state is identified. Notably, the detection outcome rather than the actual working condition decides how preventive maintenance operates. The long‐run cost rate is minimized via the optimization of the inspection cycle and replacement limit. Besides, numerical experiments conducted on train bogie bearing are provided, showing substantial superiorities over cost‐effectiveness promotion and performance improvement.","PeriodicalId":56088,"journal":{"name":"Quality and Reliability Engineering International","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quality and Reliability Engineering International","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/qre.3613","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
Inspections often perform imperfect outcomes during maintenance processes owing to human errors, management issues and other limitations. In particular, such imperfection affects the maintenance management of multistage deterioration significantly due to both false state identification and measurement errors, whose quantitative analysis, however, is seldom reported in the literature. To fill these gaps, this paper devises a condition‐based maintenance management strategy oriented to two‐stage continuous degradation under two‐dimensional inspection imperfection. Specifically, a threshold‐based replacement is executed under the normal‐working state if the detected degradation value exceeds the preset limit; additionally, preventive replacement is immediately performed once the defective state is identified. Notably, the detection outcome rather than the actual working condition decides how preventive maintenance operates. The long‐run cost rate is minimized via the optimization of the inspection cycle and replacement limit. Besides, numerical experiments conducted on train bogie bearing are provided, showing substantial superiorities over cost‐effectiveness promotion and performance improvement.
期刊介绍:
Quality and Reliability Engineering International is a journal devoted to practical engineering aspects of quality and reliability. A refereed technical journal published eight times per year, it covers the development and practical application of existing theoretical methods, research and industrial practices. Articles in the journal will be concerned with case studies, tutorial-type reviews and also with applications of new or well-known theory to the solution of actual quality and reliability problems in engineering.
Papers describing the use of mathematical and statistical tools to solve real life industrial problems are encouraged, provided that the emphasis is placed on practical applications and demonstrated case studies.
The scope of the journal is intended to include components, physics of failure, equipment and systems from the fields of electronic, electrical, mechanical and systems engineering. The areas of communications, aerospace, automotive, railways, shipboard equipment, control engineering and consumer products are all covered by the journal.
Quality and reliability of hardware as well as software are covered. Papers on software engineering and its impact on product quality and reliability are encouraged. The journal will also cover the management of quality and reliability in the engineering industry.
Special issues on a variety of key topics are published every year and contribute to the enhancement of Quality and Reliability Engineering International as a major reference in its field.