Ammar M. Sarhan, Ehab M. Almetwally, Abdelfattah Mustafa, Ahlam H. Tolba
{"title":"Statistical inference of a series reliability system using shock models with Weibull distribution","authors":"Ammar M. Sarhan, Ehab M. Almetwally, Abdelfattah Mustafa, Ahlam H. Tolba","doi":"10.1002/qre.3604","DOIUrl":null,"url":null,"abstract":"In this study, we define a series system with non‐independent and non‐identical components using a shock model with sources of fatal shocks. Here, it is assumed that the shocks happen randomly and independently, following a Weibull distribution with various scale and shape parameters. A dependability model with unknown parameters is produced by this process. Making statistical conclusions about the model parameters is the main objective of this research. We apply the maximum likelihood and Bayes approaches to determine the model parameters' point and interval estimates. We shall demonstrate that no analytical solutions to the likelihood equations must be solved to obtain the parameters' maximum likelihood estimates. As a result, we will use the R program to approximate the parameter point and interval estimates. Additionally, we will use the bootstrap‐t and bootstrap‐p methods to approximate the confidence intervals. About the Bayesian approach, we presume that each model parameter is independent and follows a gamma prior distribution with a range of attached hyperparameter values. The model parameters' posterior distribution does not take a practical form. We are unable to derive the Bayes estimates in closed forms as a result. To solve this issue, we use the Gibbs sampler from the Metropolis‐Hasting algorithm based on the Markov chain Monte Carlo method to condense the posterior distribution. To demonstrate the relevance of this research, a real data set application is detailed.","PeriodicalId":56088,"journal":{"name":"Quality and Reliability Engineering International","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quality and Reliability Engineering International","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/qre.3604","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we define a series system with non‐independent and non‐identical components using a shock model with sources of fatal shocks. Here, it is assumed that the shocks happen randomly and independently, following a Weibull distribution with various scale and shape parameters. A dependability model with unknown parameters is produced by this process. Making statistical conclusions about the model parameters is the main objective of this research. We apply the maximum likelihood and Bayes approaches to determine the model parameters' point and interval estimates. We shall demonstrate that no analytical solutions to the likelihood equations must be solved to obtain the parameters' maximum likelihood estimates. As a result, we will use the R program to approximate the parameter point and interval estimates. Additionally, we will use the bootstrap‐t and bootstrap‐p methods to approximate the confidence intervals. About the Bayesian approach, we presume that each model parameter is independent and follows a gamma prior distribution with a range of attached hyperparameter values. The model parameters' posterior distribution does not take a practical form. We are unable to derive the Bayes estimates in closed forms as a result. To solve this issue, we use the Gibbs sampler from the Metropolis‐Hasting algorithm based on the Markov chain Monte Carlo method to condense the posterior distribution. To demonstrate the relevance of this research, a real data set application is detailed.
期刊介绍:
Quality and Reliability Engineering International is a journal devoted to practical engineering aspects of quality and reliability. A refereed technical journal published eight times per year, it covers the development and practical application of existing theoretical methods, research and industrial practices. Articles in the journal will be concerned with case studies, tutorial-type reviews and also with applications of new or well-known theory to the solution of actual quality and reliability problems in engineering.
Papers describing the use of mathematical and statistical tools to solve real life industrial problems are encouraged, provided that the emphasis is placed on practical applications and demonstrated case studies.
The scope of the journal is intended to include components, physics of failure, equipment and systems from the fields of electronic, electrical, mechanical and systems engineering. The areas of communications, aerospace, automotive, railways, shipboard equipment, control engineering and consumer products are all covered by the journal.
Quality and reliability of hardware as well as software are covered. Papers on software engineering and its impact on product quality and reliability are encouraged. The journal will also cover the management of quality and reliability in the engineering industry.
Special issues on a variety of key topics are published every year and contribute to the enhancement of Quality and Reliability Engineering International as a major reference in its field.