Understanding the mechanism of monolayer adsorption from isotherm

IF 3 4区 工程技术 Q3 CHEMISTRY, PHYSICAL Adsorption Pub Date : 2024-07-03 DOI:10.1007/s10450-024-00512-4
Elena Butyrskaya
{"title":"Understanding the mechanism of monolayer adsorption from isotherm","authors":"Elena Butyrskaya","doi":"10.1007/s10450-024-00512-4","DOIUrl":null,"url":null,"abstract":"<p>A new approach for understanding the mechanism of monolayer adsorption is proposed. The Langmuir model, which does not take into account sorbate-sorbate bonds, is the most common one for interpreting monolayer adsorption.When using it, the assumption about the absence of sorbate-sorbate interactions between the sorbate molecules of the first layer is never checked. However, the sorbate-sorbate interactions can make an important contribution to the adsorption energy at physical adsorption. In this case, the formation of sorbate clusters in first layer is an energetically preferable process compared to the process of individual molecules adsorption. The monolayer cluster adsorption model, which takes into account sorbate-sorbate interactions, was introduced in our previous works. In present work, based on the experimental isotherms analysis, a criterion for the mechanism of monolayer adsorption (cluster or adsorption of individual molecules) is proposed. Examples are given of the this criterion application to the study of the mechanism of carbon dioxide adsorption by IRMOF-6, IRMOF-11 and IRMOF-1, ethane by highly activated carbon Saran and methane by mica. This work develops a new approach to the interpretation of monolayer adsorption mechanism.</p>","PeriodicalId":458,"journal":{"name":"Adsorption","volume":"39 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adsorption","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10450-024-00512-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A new approach for understanding the mechanism of monolayer adsorption is proposed. The Langmuir model, which does not take into account sorbate-sorbate bonds, is the most common one for interpreting monolayer adsorption.When using it, the assumption about the absence of sorbate-sorbate interactions between the sorbate molecules of the first layer is never checked. However, the sorbate-sorbate interactions can make an important contribution to the adsorption energy at physical adsorption. In this case, the formation of sorbate clusters in first layer is an energetically preferable process compared to the process of individual molecules adsorption. The monolayer cluster adsorption model, which takes into account sorbate-sorbate interactions, was introduced in our previous works. In present work, based on the experimental isotherms analysis, a criterion for the mechanism of monolayer adsorption (cluster or adsorption of individual molecules) is proposed. Examples are given of the this criterion application to the study of the mechanism of carbon dioxide adsorption by IRMOF-6, IRMOF-11 and IRMOF-1, ethane by highly activated carbon Saran and methane by mica. This work develops a new approach to the interpretation of monolayer adsorption mechanism.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从等温线了解单层吸附机理
本文提出了一种理解单层吸附机理的新方法。朗缪尔模型不考虑吸附剂-吸附剂键,是解释单层吸附的最常用模型。在使用该模型时,从未检查过第一层吸附剂分子之间不存在吸附剂-吸附剂相互作用的假设。然而,在物理吸附时,吸附剂与吸附剂之间的相互作用会对吸附能产生重要影响。在这种情况下,与单个分子吸附过程相比,在第一层形成吸附剂团簇在能量上是一个更可取的过程。我们在之前的研究中提出了考虑到吸附剂-吸附剂相互作用的单层团簇吸附模型。本研究在实验等温线分析的基础上,提出了单层吸附(团簇吸附或单个分子吸附)机制的标准。在研究 IRMOF-6、IRMOF-11 和 IRMOF-1 对二氧化碳的吸附机理,高活性碳 Saran 对乙烷的吸附机理,以及云母对甲烷的吸附机理时,举例说明了这一标准的应用。这项工作为解释单层吸附机理提供了一种新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Adsorption
Adsorption 工程技术-工程:化工
CiteScore
8.10
自引率
3.00%
发文量
18
审稿时长
2.4 months
期刊介绍: The journal Adsorption provides authoritative information on adsorption and allied fields to scientists, engineers, and technologists throughout the world. The information takes the form of peer-reviewed articles, R&D notes, topical review papers, tutorial papers, book reviews, meeting announcements, and news. Coverage includes fundamental and practical aspects of adsorption: mathematics, thermodynamics, chemistry, and physics, as well as processes, applications, models engineering, and equipment design. Among the topics are Adsorbents: new materials, new synthesis techniques, characterization of structure and properties, and applications; Equilibria: novel theories or semi-empirical models, experimental data, and new measurement methods; Kinetics: new models, experimental data, and measurement methods. Processes: chemical, biochemical, environmental, and other applications, purification or bulk separation, fixed bed or moving bed systems, simulations, experiments, and design procedures.
期刊最新文献
Equilibrium loadings and adsorption isotherm model parameters estimated from multi-component breakthrough curves IAST and GCMC predictions and experimental measurements of gas mixture adsorption on three metal–organic frameworks Adsorption and evolution of N2 molecules over ZnO monolayer: a combined DFT and kinetic Monte-Carlo insight Five definitions of adsorption and their relevance to the formulation of dynamic mass balances in gas adsorption columns Gold and platinum functionalized arsenene for the detection of CH3Cl and CH3Br: first-principles insights
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1