Synthesis of Polyoxygenated 4,5-Diarylpyridazines with Antiproliferative and Antitubulin Activity via Inverse Electron-Demand Diels-Alder Reaction of 1,2,4,5- Tetrazine#

IF 1.7 3区 化学 Q3 CHEMISTRY, ORGANIC Current Organic Chemistry Pub Date : 2024-07-04 DOI:10.2174/0113852728314401240613045216
Olga I. Adaeva, Dmitry V. Demchuk, Roman A. Dolotov, Tatiana S. Kuptsova, Marina N. Semenova, Victor V. Semenov
{"title":"Synthesis of Polyoxygenated 4,5-Diarylpyridazines with Antiproliferative and Antitubulin Activity via Inverse Electron-Demand Diels-Alder Reaction of 1,2,4,5- Tetrazine#","authors":"Olga I. Adaeva, Dmitry V. Demchuk, Roman A. Dolotov, Tatiana S. Kuptsova, Marina N. Semenova, Victor V. Semenov","doi":"10.2174/0113852728314401240613045216","DOIUrl":null,"url":null,"abstract":": The synthesis of a series of multifunctionalized 4,5-diarylpyridazines via inverse electron-demand Diels-Alder reaction between highly oxygenated diarylacetylenes and unsubstituted 1,2,4,5-tetrazine was developed using polyalkoxybenzenes isolated from industrial essential oils as starting material. The reaction proceeded smoothly to afford combretastatin A-4 analogs with pyridazine linker in consistently high yield. In a phenotypic sea urchin embryo assay, diarylpyridazine with 3,4,5-trimethoxyphenyl and 3-amino-4- methoxyphenyl aryl rings was identified as a potent antimitotic microtubule-destabilizing compound.","PeriodicalId":10926,"journal":{"name":"Current Organic Chemistry","volume":"28 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2174/0113852728314401240613045216","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

Abstract

: The synthesis of a series of multifunctionalized 4,5-diarylpyridazines via inverse electron-demand Diels-Alder reaction between highly oxygenated diarylacetylenes and unsubstituted 1,2,4,5-tetrazine was developed using polyalkoxybenzenes isolated from industrial essential oils as starting material. The reaction proceeded smoothly to afford combretastatin A-4 analogs with pyridazine linker in consistently high yield. In a phenotypic sea urchin embryo assay, diarylpyridazine with 3,4,5-trimethoxyphenyl and 3-amino-4- methoxyphenyl aryl rings was identified as a potent antimitotic microtubule-destabilizing compound.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过 1,2,4,5- 四嗪的逆电子需求 Diels-Alder 反应合成具有抗增殖和抗微管蛋白活性的多氧合 4,5-Diarylpyridazines #
:以从工业精油中分离出的多烷氧基苯为起始原料,通过高含氧二芳基乙炔与未取代的 1,2,4,5- 四嗪之间的反电子需求 Diels-Alder 反应,合成了一系列多功能 4,5- 二芳基哒嗪。反应顺利进行,以持续的高产率获得了带有哒嗪连接物的考布他丁 A-4 类似物。在表型海胆胚胎试验中,具有 3,4,5-三甲氧基苯基和 3-氨基-4-甲氧基苯基芳基环的哒嗪被鉴定为一种有效的抗畸形微管破坏化合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Organic Chemistry
Current Organic Chemistry 化学-有机化学
CiteScore
3.70
自引率
7.70%
发文量
76
审稿时长
1 months
期刊介绍: Current Organic Chemistry aims to provide in-depth/mini reviews on the current progress in various fields related to organic chemistry including bioorganic chemistry, organo-metallic chemistry, asymmetric synthesis, heterocyclic chemistry, natural product chemistry, catalytic and green chemistry, suitable aspects of medicinal chemistry and polymer chemistry, as well as analytical methods in organic chemistry. The frontier reviews provide the current state of knowledge in these fields and are written by chosen experts who are internationally known for their eminent research contributions. The Journal also accepts high quality research papers focusing on hot topics, highlights and letters besides thematic issues in these fields. Current Organic Chemistry should prove to be of great interest to organic chemists in academia and industry, who wish to keep abreast with recent developments in key fields of organic chemistry.
期刊最新文献
A Novel Family of Selenazolo[3,2-a]pyridinium Derivatives Based on Annulation Reactions and Comparative Analysis of Antimicrobial Activity of the Selenium and Sulfur Analogs of Chalcogenazolo[3,2-a]pyridiniums Exploring the Potential of Novel 4-Thiazolidinone Derivatives as Dual Anti-inflammatory and Antioxidant Agents: Synthesis, Pharmacological Activity and Docking Analysis 3,4-Dihydropyrimidine-2(1H)-one/thione Derivatives as Anti-inflammatory and Antioxidant Agents: Synthesis, Biological Activity, and Docking Studies Di-tert-butyl Peroxide (DTBP)-Promoted Heterocyclic Ring Construction A New Route for the Synthesis of Trichloromethyl-1H-Benzo[d]imidazole and (1,2,3- Triazol)-1H-Benzo[d]imidazole Derivatives via Copper-Catalyzed N-Arylation and Huisgen Reactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1