{"title":"On an Ambrosetti–Prodi type problem for a class of fourth-order ODEs involving Dirac weights","authors":"Jiao Zhao, Ruyun Ma","doi":"10.1007/s00033-024-02285-w","DOIUrl":null,"url":null,"abstract":"<p>The aim of this paper is to establish an Ambrosetti–Prodi type result involving Dirac weights </p><span>$$\\begin{aligned} \\left\\{ \\begin{array}{ll} u''''(x)+q(x)u(x)=(c (x)+\\sum \\limits _{i=1}^{p}c_{i}\\delta (x-x_i))(g(u(x))+f(x)),~~~~&{}x\\in (0,1),\\\\ \\ u(0)=u(1)=u''(0)=u''(1)=0,\\\\ \\end{array}\\right. \\end{aligned}$$</span><p>where <span>\\(\\delta (x-x_i)\\)</span> is the canonical Dirac delta function at the point <span>\\(x_i\\)</span>, <span>\\(i=1,2,\\ldots ,p\\)</span>, <span>\\(p\\in \\mathbb {N}\\)</span>, <span>\\(0=x_0<x_1<\\cdots<x_p<x_{p+1}=1\\)</span>, <span>\\(q\\in C([0,1],[0,+\\infty ))\\)</span>, <span>\\(f\\in L^1([0,1],\\mathbb {R})\\)</span>, <span>\\(g\\in C^{1}(\\mathbb {R},\\mathbb {R})\\)</span>, <span>\\(c\\in C([0,1],[0,+\\infty ))\\)</span>, <span>\\(c_i\\in [0,+\\infty )\\)</span>. The main tools used are the sub-super-solution method and Leray–Schauder topological degree theory.\n</p>","PeriodicalId":501481,"journal":{"name":"Zeitschrift für angewandte Mathematik und Physik","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift für angewandte Mathematik und Physik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00033-024-02285-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of this paper is to establish an Ambrosetti–Prodi type result involving Dirac weights
where \(\delta (x-x_i)\) is the canonical Dirac delta function at the point \(x_i\), \(i=1,2,\ldots ,p\), \(p\in \mathbb {N}\), \(0=x_0<x_1<\cdots<x_p<x_{p+1}=1\), \(q\in C([0,1],[0,+\infty ))\), \(f\in L^1([0,1],\mathbb {R})\), \(g\in C^{1}(\mathbb {R},\mathbb {R})\), \(c\in C([0,1],[0,+\infty ))\), \(c_i\in [0,+\infty )\). The main tools used are the sub-super-solution method and Leray–Schauder topological degree theory.