{"title":"Order-restricted hypothesis tests for nonlinear mixed-effects models with measurement errors in covariates","authors":"Yixin Zhang, Wei Liu, Lang Wu","doi":"10.1002/cjs.11812","DOIUrl":null,"url":null,"abstract":"<p>Order-restricted hypothesis testing problems frequently arise in practice, including studies involving regression models for longitudinal data. These tests are known to be more powerful than tests that ignore such restrictions. In this article, we consider order-restricted tests for nonlinear mixed-effects models with measurement errors in time-dependent covariates. We propose to use a multiple imputation method to address measurement errors, since this approach allows us to use existing complete-data methods for order-restricted tests. Some theoretical results are presented. We evaluate our proposed methods via simulation studies that demonstrate they are more powerful than either a competing naive method or a two-step approach to testing hypotheses. We illustrate the use of our proposed approach by analyzing data from an HIV/AIDS study.</p>","PeriodicalId":55281,"journal":{"name":"Canadian Journal of Statistics-Revue Canadienne De Statistique","volume":"52 4","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Statistics-Revue Canadienne De Statistique","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11812","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
Order-restricted hypothesis testing problems frequently arise in practice, including studies involving regression models for longitudinal data. These tests are known to be more powerful than tests that ignore such restrictions. In this article, we consider order-restricted tests for nonlinear mixed-effects models with measurement errors in time-dependent covariates. We propose to use a multiple imputation method to address measurement errors, since this approach allows us to use existing complete-data methods for order-restricted tests. Some theoretical results are presented. We evaluate our proposed methods via simulation studies that demonstrate they are more powerful than either a competing naive method or a two-step approach to testing hypotheses. We illustrate the use of our proposed approach by analyzing data from an HIV/AIDS study.
期刊介绍:
The Canadian Journal of Statistics is the official journal of the Statistical Society of Canada. It has a reputation internationally as an excellent journal. The editorial board is comprised of statistical scientists with applied, computational, methodological, theoretical and probabilistic interests. Their role is to ensure that the journal continues to provide an international forum for the discipline of Statistics.
The journal seeks papers making broad points of interest to many readers, whereas papers making important points of more specific interest are better placed in more specialized journals. The levels of innovation and impact are key in the evaluation of submitted manuscripts.