Cross-Coupling First-Order Gradient Superconducting Quantum Interference Device for Current Sensing

IF 1.1 3区 物理与天体物理 Q4 PHYSICS, APPLIED Journal of Low Temperature Physics Pub Date : 2024-07-04 DOI:10.1007/s10909-024-03182-2
Qing Chen, Qing Zhong, Wei Li, Wenhui Cao, Jinjin Li, Jianting Zhao, Da Xu
{"title":"Cross-Coupling First-Order Gradient Superconducting Quantum Interference Device for Current Sensing","authors":"Qing Chen, Qing Zhong, Wei Li, Wenhui Cao, Jinjin Li, Jianting Zhao, Da Xu","doi":"10.1007/s10909-024-03182-2","DOIUrl":null,"url":null,"abstract":"<p>High sensitivity and low noise of superconducting quantum interference devices make them ideal for reading the minute changes in resistance of a transition-edge sensor, which occurs when it absorbs energy or power. A series of first-order gradient, cross-coupling octagonal SQUIDs specifically tailored for use in TES were developed and fabricated for the advantage of lower parasitic capacitance compared with the overlap-coupling ones. It is obtained that a lower screening parameter and increased shunt resistance per junction lead to a higher flux-to-voltage transfer coefficient. This enhancement significantly boosts detection sensitivity and effectively minimizes noise contributions from electronics operating at room temperature. The low-temperature measurement results of the sample with an input coil of 3.5 turns indicate that a small device current white noise of 4.8 pA/√Hz, a device flux white noise of 1.1 μΦ<sub>0</sub>/√Hz, and an optimal flux-to-voltage transfer coefficient of 338.2 μV/Φ<sub>0</sub> are achieved. The bandwidth of a SQUID current sensor with a smaller inductance of the input coil and a larger shunt resistance exceeds 10 MHz. SQUID current sensors, featuring octagonal structures with the first-order gradient cross-coupling, exhibit low flux noise, low current noise, and a high flux-to-voltage transfer coefficient, which can satisfy the requirements of TES applications.</p>","PeriodicalId":641,"journal":{"name":"Journal of Low Temperature Physics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Low Temperature Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s10909-024-03182-2","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

High sensitivity and low noise of superconducting quantum interference devices make them ideal for reading the minute changes in resistance of a transition-edge sensor, which occurs when it absorbs energy or power. A series of first-order gradient, cross-coupling octagonal SQUIDs specifically tailored for use in TES were developed and fabricated for the advantage of lower parasitic capacitance compared with the overlap-coupling ones. It is obtained that a lower screening parameter and increased shunt resistance per junction lead to a higher flux-to-voltage transfer coefficient. This enhancement significantly boosts detection sensitivity and effectively minimizes noise contributions from electronics operating at room temperature. The low-temperature measurement results of the sample with an input coil of 3.5 turns indicate that a small device current white noise of 4.8 pA/√Hz, a device flux white noise of 1.1 μΦ0/√Hz, and an optimal flux-to-voltage transfer coefficient of 338.2 μV/Φ0 are achieved. The bandwidth of a SQUID current sensor with a smaller inductance of the input coil and a larger shunt resistance exceeds 10 MHz. SQUID current sensors, featuring octagonal structures with the first-order gradient cross-coupling, exhibit low flux noise, low current noise, and a high flux-to-voltage transfer coefficient, which can satisfy the requirements of TES applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于电流感应的交叉耦合一阶梯度超导量子干涉装置
超导量子干涉器件具有高灵敏度和低噪声的特点,因此非常适合读取过渡边传感器在吸收能量或功率时发生的微小电阻变化。我们开发并制造了一系列专门用于 TES 的一阶梯度交叉耦合八边形 SQUID,与重叠耦合器件相比,它们具有寄生电容更低的优势。结果表明,较低的屏蔽参数和增加的每个结的并联电阻可带来较高的流量-电压传递系数。这一改进极大地提高了检测灵敏度,并有效地降低了电子元件在室温下工作时产生的噪声。输入线圈为 3.5 匝的样品的低温测量结果表明,器件电流白噪声为 4.8 pA/√Hz,器件磁通白噪声为 1.1 μΦ0/√Hz,最佳磁通-电压传递系数为 338.2 μV/Φ0。输入线圈电感较小、并联电阻较大的 SQUID 电流传感器的带宽超过 10 MHz。SQUID 电流传感器采用具有一阶梯度交叉耦合的八边形结构,具有低磁通量噪声、低电流噪声和高磁通量-电压传递系数的特点,可以满足 TES 应用的要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Low Temperature Physics
Journal of Low Temperature Physics 物理-物理:凝聚态物理
CiteScore
3.30
自引率
25.00%
发文量
245
审稿时长
1 months
期刊介绍: The Journal of Low Temperature Physics publishes original papers and review articles on all areas of low temperature physics and cryogenics, including theoretical and experimental contributions. Subject areas include: Quantum solids, liquids and gases; Superfluidity; Superconductivity; Condensed matter physics; Experimental techniques; The Journal encourages the submission of Rapid Communications and Special Issues.
期刊最新文献
An Analysis Method of Heat and Light Detection with Scintillating Crystals Practical Investigations of Wireless Multiple-Power Charging Unit for Electron Quench Detection Device in the Super High Field Superconducting Magnet Kelvin–Helmholtz Instability in $$^3$$ He Superfluids in Zero-Temperature Limit Design and Development of a 224-pixel TES X-Ray Microcalorimeter System for Microanalysis with STEM Theoretical Studies on Off-Axis Phase Diagrams and Knight Shifts in UTe $$_2$$ : Tetra-Critical Point, d-Vector Rotation, and Multiple Phases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1