Xinzhi Zhang, Boyi Liu, Xinhe Ding, Ziwei Li, Ming Kong, Wenqing Shi
{"title":"Screening effects of heavy metals in urban rivers within plains: implications for ecological risk assessment","authors":"Xinzhi Zhang, Boyi Liu, Xinhe Ding, Ziwei Li, Ming Kong, Wenqing Shi","doi":"10.1007/s11368-024-03854-2","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Purpose</h3><p>The objective of this study was to investigate the spatiotemporal distribution patterns of two common heavy metals, Cd and Pb, in urban rivers in plains, and analyze the impact of weak hydrodynamics on the transport of heavy metals, and guide their ecological risk assessments in these regions.</p><h3 data-test=\"abstract-sub-heading\">Materials and methods</h3><p>Two field surveys (wet and dry seasons) were conducted at a total of 36 sites in the tributaries of Gehu Lake, located in a plain region in China. The European Community Bureau of Reference (BCR) extraction method was employed to analyze the components of Cd and Pb. The Nemello index and ecological risk index were calculated to assess their pollution levels and ecological risks.</p><h3 data-test=\"abstract-sub-heading\">Results and discussion</h3><p>Cd primarily accumulated at the river mouths, while Pb was predominantly concentrated near the discharge sources. The mobile fractions of Cd were more likely to be released and migrate downstream, and thus the total Cd content demonstrated a significantly negative correlation with these mobile forms (<i>p</i> < 0.05). In contrast, although Pb had a greater proportion of mobile fractions, they were readily re-adsorbed onto particles and settled near the source. The source area displayed notable pollution with Pb, whereas the downstream river mouth area posed a high risk of Cd pollution.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>The results indicated that the weak river hydrodynamics within plains amplify the impact of heavy metal mobility on their behaviors, producing a “screening effect” on Pb and Cd and resulting in distinct distribution patterns in sediments. These findings can guide the ecological risk assessment of heavy metals in aquatic ecosystems within plains.</p>","PeriodicalId":17139,"journal":{"name":"Journal of Soils and Sediments","volume":"67 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Soils and Sediments","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11368-024-03854-2","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
The objective of this study was to investigate the spatiotemporal distribution patterns of two common heavy metals, Cd and Pb, in urban rivers in plains, and analyze the impact of weak hydrodynamics on the transport of heavy metals, and guide their ecological risk assessments in these regions.
Materials and methods
Two field surveys (wet and dry seasons) were conducted at a total of 36 sites in the tributaries of Gehu Lake, located in a plain region in China. The European Community Bureau of Reference (BCR) extraction method was employed to analyze the components of Cd and Pb. The Nemello index and ecological risk index were calculated to assess their pollution levels and ecological risks.
Results and discussion
Cd primarily accumulated at the river mouths, while Pb was predominantly concentrated near the discharge sources. The mobile fractions of Cd were more likely to be released and migrate downstream, and thus the total Cd content demonstrated a significantly negative correlation with these mobile forms (p < 0.05). In contrast, although Pb had a greater proportion of mobile fractions, they were readily re-adsorbed onto particles and settled near the source. The source area displayed notable pollution with Pb, whereas the downstream river mouth area posed a high risk of Cd pollution.
Conclusions
The results indicated that the weak river hydrodynamics within plains amplify the impact of heavy metal mobility on their behaviors, producing a “screening effect” on Pb and Cd and resulting in distinct distribution patterns in sediments. These findings can guide the ecological risk assessment of heavy metals in aquatic ecosystems within plains.
期刊介绍:
The Journal of Soils and Sediments (JSS) is devoted to soils and sediments; it deals with contaminated, intact and disturbed soils and sediments. JSS explores both the common aspects and the differences between these two environmental compartments. Inter-linkages at the catchment scale and with the Earth’s system (inter-compartment) are an important topic in JSS. The range of research coverage includes the effects of disturbances and contamination; research, strategies and technologies for prediction, prevention, and protection; identification and characterization; treatment, remediation and reuse; risk assessment and management; creation and implementation of quality standards; international regulation and legislation.