Fabrication of S-scheme graphdiyne (g-CnH2n-2)/carbon-nitrogen vacancies hollow Ni–Fe prussian blue analogues heterojunction for boosting wide spectrum photocatalytic hydrogen evolution

IF 10.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Carbon Pub Date : 2024-07-03 DOI:10.1016/j.carbon.2024.119418
Yu Fan , Zenghui Hu , Xuqiang Hao , Zhiliang Jin
{"title":"Fabrication of S-scheme graphdiyne (g-CnH2n-2)/carbon-nitrogen vacancies hollow Ni–Fe prussian blue analogues heterojunction for boosting wide spectrum photocatalytic hydrogen evolution","authors":"Yu Fan ,&nbsp;Zenghui Hu ,&nbsp;Xuqiang Hao ,&nbsp;Zhiliang Jin","doi":"10.1016/j.carbon.2024.119418","DOIUrl":null,"url":null,"abstract":"<div><p>Efficient photocatalytic hydrogen evolution can be achieved by adjusting the morphology and constructing suitable heterojunction. In this work, an 2D/3D S-scheme graphdiyne (g-C<sub>n</sub>H<sub>2n-2</sub>)/carbon-nitrogen vacancies hollow Ni–Fe prussian blue analogues (Ni–Fe–CN PBA) heterojunction (GNF-CN) was prepared for photocatalytic hydrogen evolution. Ni–Fe–CN PBA were prepared by chemical etching and high temperature calcination. The hollow structure can realize multiple reflections of incident light and effectively improve the light utilization efficiency. The CN vacancy changes the band structure of Ni–Fe PBA and enhances its light absorption capacity. Graphdiyne nanosheets (GDY) prepared by load ball milling can increase the active site. The key lies in the construction of an S-scheme heterojunction between GDY and Ni–Fe–CN PBA, which effectively consume useless holes and increase the utilization rate of photogenerated electrons. The S-scheme electron transfer path are proved by DFT calculation, work function and <em>in situ</em> XPS. The GNF–CN–20 showed excellent photocatalytic hydrogen evolution activity (3755.02 μmol h<sup>−1</sup> g<sup>−1</sup>) and photostability compared with GDY (1116.54 μmol h<sup>−1</sup> g<sup>−1</sup>). The present study introduces a novel approach for the construction of an S-scheme heterojunction based on GDY and PBA, enabling wide‐spectrum‐responsive photocatalytic hydrogen evolution.</p></div>","PeriodicalId":262,"journal":{"name":"Carbon","volume":null,"pages":null},"PeriodicalIF":10.5000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008622324006377","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient photocatalytic hydrogen evolution can be achieved by adjusting the morphology and constructing suitable heterojunction. In this work, an 2D/3D S-scheme graphdiyne (g-CnH2n-2)/carbon-nitrogen vacancies hollow Ni–Fe prussian blue analogues (Ni–Fe–CN PBA) heterojunction (GNF-CN) was prepared for photocatalytic hydrogen evolution. Ni–Fe–CN PBA were prepared by chemical etching and high temperature calcination. The hollow structure can realize multiple reflections of incident light and effectively improve the light utilization efficiency. The CN vacancy changes the band structure of Ni–Fe PBA and enhances its light absorption capacity. Graphdiyne nanosheets (GDY) prepared by load ball milling can increase the active site. The key lies in the construction of an S-scheme heterojunction between GDY and Ni–Fe–CN PBA, which effectively consume useless holes and increase the utilization rate of photogenerated electrons. The S-scheme electron transfer path are proved by DFT calculation, work function and in situ XPS. The GNF–CN–20 showed excellent photocatalytic hydrogen evolution activity (3755.02 μmol h−1 g−1) and photostability compared with GDY (1116.54 μmol h−1 g−1). The present study introduces a novel approach for the construction of an S-scheme heterojunction based on GDY and PBA, enabling wide‐spectrum‐responsive photocatalytic hydrogen evolution.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
制备 S 型石墨二炔(g-CNH2n-2)/碳氮空位中空镍铁普鲁士蓝类似物异质结,促进宽光谱光催化氢气进化
通过调整形态和构建合适的异质结,可以实现高效的光催化氢气进化。本研究制备了用于光催化氢气进化的二维/三维 S 型石墨二炔(g-CNH2n-2)/碳氮空位中空镍铁元素普鲁士蓝类似物(Ni-Fe-CN PBA)异质结(GNF-CN)。Ni-Fe-CN PBA 是通过化学蚀刻和高温煅烧制备的。中空结构可实现入射光的多重反射,有效提高光利用效率。CN 空位改变了 Ni-Fe PBA 的能带结构,增强了其光吸收能力。通过负载球磨制备的石墨二炔纳米片(GDY)可以增加活性位点。关键在于在 GDY 和 Ni-Fe-CN PBA 之间构建 S 型异质结,从而有效消耗无用空穴,提高光生电子的利用率。通过 DFT 计算、功函数和原位 XPS 验证了 S 型电子转移路径。与 GDY(1116.54 μmol h-1 g-1)相比,GNF-CN-20 表现出优异的光催化氢气进化活性(3755.02 μmol h-1 g-1)和光稳定性。本研究介绍了一种基于 GDY 和 PBA 构建 S 型异质结的新方法,从而实现了广谱响应的光催化氢进化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Carbon
Carbon 工程技术-材料科学:综合
CiteScore
20.80
自引率
7.30%
发文量
0
审稿时长
23 days
期刊介绍: The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.
期刊最新文献
Redox-active hydrogel electrolytes for carbon-based flexible supercapacitors over a wide temperature range New insights into the role of nitrogen doping in microporous carbon on the capacitive charge storage mechanism: from ab initio to machine learning accelerated molecular dynamics Mechanics of microblister tests in 2D materials accounting for frictional slippage Controllable preparation of carbon nanofiber membranes for enhanced flexibility and permeability Copper molybdenum sulfide coupled with multi-walled carbon nanotube nanocomposite for robust water splitting process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1