Construction of Binary Matrix for Efficient Room Temperature Phosphorescence Emission

IF 8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Optical Materials Pub Date : 2024-07-04 DOI:10.1002/adom.202401270
Qinglong Jia, Changchang Bo, Ziyi Lu, Wensheng Xu, Jiayi Liu, Li Gao, Ligong Chen, Bowei Wang
{"title":"Construction of Binary Matrix for Efficient Room Temperature Phosphorescence Emission","authors":"Qinglong Jia, Changchang Bo, Ziyi Lu, Wensheng Xu, Jiayi Liu, Li Gao, Ligong Chen, Bowei Wang","doi":"10.1002/adom.202401270","DOIUrl":null,"url":null,"abstract":"Despite the extensive research on room temperature phosphorescent (RTP) materials, it remains a great challenge to further improve the photophysical properties of RTP materials. In this study, the RTP emission of guest molecule is significantly enhanced by constructing binary matrices containing cyanuric acid (CA) and amino‐containing compounds. Systematic studies show that the strong interaction between the two components of binary matrix induced variations in the guest molecular configuration and excited state electron distribution, thus facilitating the production of more triplet excitons. Furthermore, the binary matrix also exhibits stronger domain‐limiting effect compared to the CA mono‐matrix, effectively inhibits the energy loss of triplet excitons due to quenching and non‐radiative transitions. The prepared binary matrix RTP materials present ultralong phosphorescence lifetime and high phosphorescence quantum yield (up to 3.21 s and 7.31%, respectively), and even achieve bright RTP emission in a variety of organic solvents and aqueous media. Moreover, the RTP emission intensity of the best binary matrix composite can reach more than 28 times that of the CA mono‐matrix composite, and the RTP lifetime can be extended by 1.51 s.","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":null,"pages":null},"PeriodicalIF":8.0000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adom.202401270","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Despite the extensive research on room temperature phosphorescent (RTP) materials, it remains a great challenge to further improve the photophysical properties of RTP materials. In this study, the RTP emission of guest molecule is significantly enhanced by constructing binary matrices containing cyanuric acid (CA) and amino‐containing compounds. Systematic studies show that the strong interaction between the two components of binary matrix induced variations in the guest molecular configuration and excited state electron distribution, thus facilitating the production of more triplet excitons. Furthermore, the binary matrix also exhibits stronger domain‐limiting effect compared to the CA mono‐matrix, effectively inhibits the energy loss of triplet excitons due to quenching and non‐radiative transitions. The prepared binary matrix RTP materials present ultralong phosphorescence lifetime and high phosphorescence quantum yield (up to 3.21 s and 7.31%, respectively), and even achieve bright RTP emission in a variety of organic solvents and aqueous media. Moreover, the RTP emission intensity of the best binary matrix composite can reach more than 28 times that of the CA mono‐matrix composite, and the RTP lifetime can be extended by 1.51 s.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
构建用于高效室温磷光发射的二元基质
尽管人们对室温磷光(RTP)材料进行了广泛的研究,但进一步提高 RTP 材料的光物理特性仍然是一项巨大的挑战。本研究通过构建含有三聚氰酸(CA)和含氨基化合物的二元基质,显著增强了客体分子的 RTP 发射。系统研究表明,二元基质中两种成分之间的强相互作用导致客体分子构型和激发态电子分布发生变化,从而促进了更多三重激子的产生。此外,与 CA 单基质相比,二元基质还表现出更强的限域效应,有效抑制了三重激子因淬火和非辐射转变而造成的能量损失。所制备的二元基质 RTP 材料具有超长的磷光寿命和较高的磷光量子产率(分别高达 3.21 秒和 7.31%),甚至可以在多种有机溶剂和水介质中实现明亮的 RTP 发射。此外,最佳二元基复合材料的 RTP 发射强度可达 CA 单基质复合材料的 28 倍以上,RTP 寿命可延长 1.51 秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Optical Materials
Advanced Optical Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-OPTICS
CiteScore
13.70
自引率
6.70%
发文量
883
审稿时长
1.5 months
期刊介绍: Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.
期刊最新文献
Fusion of Selenium‐Embedded Multi‐Resonance Units Toward Narrowband Emission and Fast Triplet‐Singlet Exciton Conversion Rationalizing the Amplified Spontaneous Emission Mechanism in CsPbBr3 Perovskite Nanocrystals Films by means of Optical Gain Measurements Masthead: (Advanced Optical Materials 21/2024) Broadband Mode Division Multiplexing of OAM‐Modes by a Micro Printed Waveguide Structure (Advanced Optical Materials 21/2024) Topological broadband invisibility (Advanced Optical Materials 21/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1