Icaritin inhibits the progression of urothelial cancer by suppressing PADI2-mediated neutrophil infiltration and neutrophil extracellular trap formation
{"title":"Icaritin inhibits the progression of urothelial cancer by suppressing PADI2-mediated neutrophil infiltration and neutrophil extracellular trap formation","authors":"","doi":"10.1016/j.apsb.2024.06.029","DOIUrl":null,"url":null,"abstract":"<div><p>Tumor relapse and metastasis are the major causes of mortality associated with urothelial cancer. In the tumor microenvironment, negative regulatory molecules and various immune cell subtypes suppress antitumor immunity. The inflammatory microenvironment, associated with neutrophils and neutrophil extracellular traps (NETs), promotes tumor metastasis. However, no drugs are currently available to specifically inhibit neutrophils and NETs. In this study, we first demonstrated that icaritin (ICT), a Chinese herbal remedy that is a first-line treatment for advanced and incurable hepatocellular carcinoma, reduces NETs caused by suicidal NETosis and prevents neutrophil infiltration in the tumor microenvironment. Mechanistically, ICT binds to and inhibits the expression of PADI2 in neutrophils, thereby suppressing PADI2-mediated histone citrullination. Moreover, ICT inhibits ROS generation, suppresses the MAPK signaling pathway, and inhibits NET-induced tumor metastasis. Simultaneously, ICT inhibits tumoral PADI2-mediated histone citrullination, which consequently suppresses the transcription of neutrophil-recruiting genes such as GM-CSF and IL-6. The downregulation of IL-6 expression, in turn, forms a regulatory feedback loop through the JAK2/STAT3/IL-6 axis. Through a retrospective study of clinical samples, we found a correlation between neutrophils, NETs, UCa prognosis, and immune evasion. Combining ICT with immune checkpoint inhibitors may have synergistic effects. In summary, our study demonstrated that ICT could be a novel inhibitor of NETs and a novel UCa treatment.</p></div>","PeriodicalId":6906,"journal":{"name":"Acta Pharmaceutica Sinica. B","volume":"14 9","pages":"Pages 3916-3930"},"PeriodicalIF":14.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2211383524002600/pdfft?md5=052d3d123fc6ac471b1e4968f1b74826&pid=1-s2.0-S2211383524002600-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Pharmaceutica Sinica. B","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211383524002600","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Tumor relapse and metastasis are the major causes of mortality associated with urothelial cancer. In the tumor microenvironment, negative regulatory molecules and various immune cell subtypes suppress antitumor immunity. The inflammatory microenvironment, associated with neutrophils and neutrophil extracellular traps (NETs), promotes tumor metastasis. However, no drugs are currently available to specifically inhibit neutrophils and NETs. In this study, we first demonstrated that icaritin (ICT), a Chinese herbal remedy that is a first-line treatment for advanced and incurable hepatocellular carcinoma, reduces NETs caused by suicidal NETosis and prevents neutrophil infiltration in the tumor microenvironment. Mechanistically, ICT binds to and inhibits the expression of PADI2 in neutrophils, thereby suppressing PADI2-mediated histone citrullination. Moreover, ICT inhibits ROS generation, suppresses the MAPK signaling pathway, and inhibits NET-induced tumor metastasis. Simultaneously, ICT inhibits tumoral PADI2-mediated histone citrullination, which consequently suppresses the transcription of neutrophil-recruiting genes such as GM-CSF and IL-6. The downregulation of IL-6 expression, in turn, forms a regulatory feedback loop through the JAK2/STAT3/IL-6 axis. Through a retrospective study of clinical samples, we found a correlation between neutrophils, NETs, UCa prognosis, and immune evasion. Combining ICT with immune checkpoint inhibitors may have synergistic effects. In summary, our study demonstrated that ICT could be a novel inhibitor of NETs and a novel UCa treatment.
Acta Pharmaceutica Sinica. BPharmacology, Toxicology and Pharmaceutics-General Pharmacology, Toxicology and Pharmaceutics
CiteScore
22.40
自引率
5.50%
发文量
1051
审稿时长
19 weeks
期刊介绍:
The Journal of the Institute of Materia Medica, Chinese Academy of Medical Sciences, and the Chinese Pharmaceutical Association oversees the peer review process for Acta Pharmaceutica Sinica. B (APSB).
Published monthly in English, APSB is dedicated to disseminating significant original research articles, rapid communications, and high-quality reviews that highlight recent advances across various pharmaceutical sciences domains. These encompass pharmacology, pharmaceutics, medicinal chemistry, natural products, pharmacognosy, pharmaceutical analysis, and pharmacokinetics.
A part of the Acta Pharmaceutica Sinica series, established in 1953 and indexed in prominent databases like Chemical Abstracts, Index Medicus, SciFinder Scholar, Biological Abstracts, International Pharmaceutical Abstracts, Cambridge Scientific Abstracts, and Current Bibliography on Science and Technology, APSB is sponsored by the Institute of Materia Medica, Chinese Academy of Medical Sciences, and the Chinese Pharmaceutical Association. Its production and hosting are facilitated by Elsevier B.V. This collaborative effort ensures APSB's commitment to delivering valuable contributions to the pharmaceutical sciences community.