Ahmad Al-Badawi, Sanjar Shaymatov, Mirzabek Alloqulov and Anzhong Wang
{"title":"A regular MOG black hole’s impact on shadows and gravitational weak lensing in the presence of a quintessence field","authors":"Ahmad Al-Badawi, Sanjar Shaymatov, Mirzabek Alloqulov and Anzhong Wang","doi":"10.1088/1572-9494/ad4c55","DOIUrl":null,"url":null,"abstract":"We investigate the impact of the modified gravity (MOG) field and the quintessence scalar field on horizon evolution, black hole (BH) shadow and the weak gravitational lensing around a static spherically symmetric BH. We first begin to write the BH metric associated with the MOG parameter and quintessence scalar field. We then determine the BH shadow and obtain numerical solutions for the photon sphere and shadow radius. We show that the MOG (α) and the quintessence (c) parameters have a significant impact on the BH shadow and photon sphere. Based on the analysis, we further show that the combined effects of the MOG parameter and quintessence field can increase the values of BH shadow and photon sphere radii. We also obtain constraints on the BH parameters by applying the observational data of Sgr A⋆ and M87⋆. Finally, we consider the weak deflection angle of BH within the context of the Gauss–Bonnet theorem (GBT) and show that the combined effects of the MOG and quintessence parameters do make the value of the deflection angle increase, and find this remarkable property is in good agreement with the physical meaning of both parameters that can maintain the strong gravitational field in the surrounding environment of a BH.","PeriodicalId":10641,"journal":{"name":"Communications in Theoretical Physics","volume":"45 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1572-9494/ad4c55","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the impact of the modified gravity (MOG) field and the quintessence scalar field on horizon evolution, black hole (BH) shadow and the weak gravitational lensing around a static spherically symmetric BH. We first begin to write the BH metric associated with the MOG parameter and quintessence scalar field. We then determine the BH shadow and obtain numerical solutions for the photon sphere and shadow radius. We show that the MOG (α) and the quintessence (c) parameters have a significant impact on the BH shadow and photon sphere. Based on the analysis, we further show that the combined effects of the MOG parameter and quintessence field can increase the values of BH shadow and photon sphere radii. We also obtain constraints on the BH parameters by applying the observational data of Sgr A⋆ and M87⋆. Finally, we consider the weak deflection angle of BH within the context of the Gauss–Bonnet theorem (GBT) and show that the combined effects of the MOG and quintessence parameters do make the value of the deflection angle increase, and find this remarkable property is in good agreement with the physical meaning of both parameters that can maintain the strong gravitational field in the surrounding environment of a BH.
期刊介绍:
Communications in Theoretical Physics is devoted to reporting important new developments in the area of theoretical physics. Papers cover the fields of:
mathematical physics
quantum physics and quantum information
particle physics and quantum field theory
nuclear physics
gravitation theory, astrophysics and cosmology
atomic, molecular, optics (AMO) and plasma physics, chemical physics
statistical physics, soft matter and biophysics
condensed matter theory
others
Certain new interdisciplinary subjects are also incorporated.