Skin-inspired interface modification strategy toward a structure-function integrated hybrid smart fabric system with self-powered sensing property for versatile applications

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Nano Research Pub Date : 2024-07-04 DOI:10.1007/s12274-024-6806-z
Xiang Cheng, Teng Chen, De Gong, Pengcheng Ma, Bo Chen, Jun Cai
{"title":"Skin-inspired interface modification strategy toward a structure-function integrated hybrid smart fabric system with self-powered sensing property for versatile applications","authors":"Xiang Cheng, Teng Chen, De Gong, Pengcheng Ma, Bo Chen, Jun Cai","doi":"10.1007/s12274-024-6806-z","DOIUrl":null,"url":null,"abstract":"<p>Fabric-based composites with superior mechanical properties and excellent perceptive function are highly desirable. However, it remains a huge challenge to attain structure-function integration, especially for hybrid fabric composites. Herein, a skin-inspired interface modification strategy is proposed toward this target by constructing a hybrid smart fabric system consisting of two types of smart fabrics: carbon nanotube (CNT)/MXene-modified aramid fabrics and zinc oxide nanorod (ZnO NR)-modified carbon fabrics. Based on that, flexible piezoelectric pressure sensors with skin-like hierarchical perception interfaces are fabricated, which demonstrate superb sensitivity of 2.39 V·kPa<sup>-1</sup> and are capable of various wearable monitoring tasks. Besides, the interface-modified hybrid fabric reinforced plastics can also be fabricated, which are proven to possess 13.6% higher tensile strength, 10.1% elastic modulus. More impressively, their average energy absorption can be improved by 111.9%, accompanied with inherent damage alert capability. This offers a paradigm to fabricate structure-function integrated hybrid smart fabric composites for the smart clothing and intelligent aerial vehicles.</p>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":null,"pages":null},"PeriodicalIF":9.5000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12274-024-6806-z","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Fabric-based composites with superior mechanical properties and excellent perceptive function are highly desirable. However, it remains a huge challenge to attain structure-function integration, especially for hybrid fabric composites. Herein, a skin-inspired interface modification strategy is proposed toward this target by constructing a hybrid smart fabric system consisting of two types of smart fabrics: carbon nanotube (CNT)/MXene-modified aramid fabrics and zinc oxide nanorod (ZnO NR)-modified carbon fabrics. Based on that, flexible piezoelectric pressure sensors with skin-like hierarchical perception interfaces are fabricated, which demonstrate superb sensitivity of 2.39 V·kPa-1 and are capable of various wearable monitoring tasks. Besides, the interface-modified hybrid fabric reinforced plastics can also be fabricated, which are proven to possess 13.6% higher tensile strength, 10.1% elastic modulus. More impressively, their average energy absorption can be improved by 111.9%, accompanied with inherent damage alert capability. This offers a paradigm to fabricate structure-function integrated hybrid smart fabric composites for the smart clothing and intelligent aerial vehicles.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
受皮肤启发的界面改性策略,实现具有自供电传感特性的结构-功能一体化混合智能织物系统的多功能应用
具有优异机械性能和卓越感知功能的织物基复合材料非常受欢迎。然而,要实现结构与功能的一体化,尤其是混合织物复合材料的一体化,仍然是一个巨大的挑战。本文针对这一目标提出了一种受皮肤启发的界面改性策略,构建了一种混合智能织物系统,该系统由两种类型的智能织物组成:碳纳米管(CNT)/MXene 改性芳纶织物和氧化锌纳米棒(ZnO NR)改性碳织物。在此基础上,制备出具有类皮肤分层感知界面的柔性压电压力传感器,其灵敏度高达 2.39 V-kPa-1,能够胜任各种可穿戴监测任务。此外,还制作出了界面改性混合织物增强塑料,其拉伸强度提高了 13.6%,弹性模量提高了 10.1%。更令人印象深刻的是,它们的平均能量吸收能力提高了 111.9%,同时还具有固有的损伤预警能力。这为制造用于智能服装和智能飞行器的结构-功能一体化混合智能织物复合材料提供了范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Research
Nano Research 化学-材料科学:综合
CiteScore
14.30
自引率
11.10%
发文量
2574
审稿时长
1.7 months
期刊介绍: Nano Research is a peer-reviewed, international and interdisciplinary research journal that focuses on all aspects of nanoscience and nanotechnology. It solicits submissions in various topical areas, from basic aspects of nanoscale materials to practical applications. The journal publishes articles on synthesis, characterization, and manipulation of nanomaterials; nanoscale physics, electrical transport, and quantum physics; scanning probe microscopy and spectroscopy; nanofluidics; nanosensors; nanoelectronics and molecular electronics; nano-optics, nano-optoelectronics, and nano-photonics; nanomagnetics; nanobiotechnology and nanomedicine; and nanoscale modeling and simulations. Nano Research offers readers a combination of authoritative and comprehensive Reviews, original cutting-edge research in Communication and Full Paper formats. The journal also prioritizes rapid review to ensure prompt publication.
期刊最新文献
Experimental and theoretical investigation of sulfur-doped g-C3N4 nanosheets/FeCo2O4 nanorods S-scheme heterojunction for photocatalytic H2 evolution Multifunctional MXene/rGO aerogels loaded with Co/MnO nanocomposites for enhanced electromagnetic wave absorption, thermal insulation and pressure sensing Giant piezotronic effect in ferroelectric field effect transistor Competitive intermetallics formation in Pd-Zn-Cd system via seeded growth from ultra-thin Pd nanosheets for electrocatalytic ethanol oxidation reaction Photo-controllable antifouling hydrogels embedded with AgNPs coated spiropyran functionalized mesoporous silica for long-term antibacterial activity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1