Approximate Gibbs sampler for efficient inference of hierarchical Bayesian models for grouped count data

IF 1.1 4区 数学 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Statistical Computation and Simulation Pub Date : 2024-07-01 DOI:10.1080/00949655.2024.2364843
Jin-Zhu Yü, Hiba Baroud
{"title":"Approximate Gibbs sampler for efficient inference of hierarchical Bayesian models for grouped count data","authors":"Jin-Zhu Yü, Hiba Baroud","doi":"10.1080/00949655.2024.2364843","DOIUrl":null,"url":null,"abstract":"Hierarchical Bayesian Poisson regression models (HBPRMs) provide a flexible modelling approach of the relationship between predictors and count response variables. The applications of HBPRMs to lar...","PeriodicalId":50040,"journal":{"name":"Journal of Statistical Computation and Simulation","volume":"65 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Computation and Simulation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/00949655.2024.2364843","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Hierarchical Bayesian Poisson regression models (HBPRMs) provide a flexible modelling approach of the relationship between predictors and count response variables. The applications of HBPRMs to lar...
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高效推断分组计数数据分层贝叶斯模型的近似吉布斯采样器
层次贝叶斯泊松回归模型(HBPRMs)为预测因子与计数响应变量之间的关系提供了一种灵活的建模方法。将 HBPRMs 应用于大数据分析的过程中,可以大大提高分析效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Statistical Computation and Simulation
Journal of Statistical Computation and Simulation 数学-计算机:跨学科应用
CiteScore
2.30
自引率
8.30%
发文量
156
审稿时长
4-8 weeks
期刊介绍: Journal of Statistical Computation and Simulation ( JSCS ) publishes significant and original work in areas of statistics which are related to or dependent upon the computer. Fields covered include computer algorithms related to probability or statistics, studies in statistical inference by means of simulation techniques, and implementation of interactive statistical systems. JSCS does not consider applications of statistics to other fields, except as illustrations of the use of the original statistics presented. Accepted papers should ideally appeal to a wide audience of statisticians and provoke real applications of theoretical constructions.
期刊最新文献
Multivariate normality tests with two-step monotone missing data: a critical review with emphasis on the different methods of handling missing values Improved Liu-ridge-type estimates for the beta regression model Variable selection and estimation for recurrent event model with covariates subject to measurement error Comparison of approaches for local testing with functional test statistics Depth for samples of sets with applications to testing equality in distribution of two samples of random sets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1