Ali Turab, Andrés Montoyo, Josué-Antonio Nescolarde-Selva
{"title":"Stability and numerical solutions for second-order ordinary differential equations with application in mechanical systems","authors":"Ali Turab, Andrés Montoyo, Josué-Antonio Nescolarde-Selva","doi":"10.1007/s12190-024-02175-4","DOIUrl":null,"url":null,"abstract":"<p>This study undertakes a comprehensive analysis of second-order Ordinary Differential Equations (ODEs) to examine animal avoidance behaviors, specifically emphasizing analytical and computational aspects. By using the Picard–Lindelöf and fixed-point theorems, we prove the existence of unique solutions and examine their stability according to the Ulam-Hyers criterion. We also investigate the effect of external forces and the system’s sensitivity to initial conditions. This investigation applies Euler and Runge–Kutta fourth-order (RK4) methods to a mass-spring-damper system for numerical approximation. A detailed analysis of the numerical approaches, including a rigorous evaluation of both absolute and relative errors, demonstrates the efficacy of these techniques compared to the exact solutions. This robust examination enhances the theoretical foundations and practical use of such ODEs in understanding complex behavioral patterns, showcasing the connection between theoretical understanding and real-world applications.</p>","PeriodicalId":15034,"journal":{"name":"Journal of Applied Mathematics and Computing","volume":"14 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics and Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12190-024-02175-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This study undertakes a comprehensive analysis of second-order Ordinary Differential Equations (ODEs) to examine animal avoidance behaviors, specifically emphasizing analytical and computational aspects. By using the Picard–Lindelöf and fixed-point theorems, we prove the existence of unique solutions and examine their stability according to the Ulam-Hyers criterion. We also investigate the effect of external forces and the system’s sensitivity to initial conditions. This investigation applies Euler and Runge–Kutta fourth-order (RK4) methods to a mass-spring-damper system for numerical approximation. A detailed analysis of the numerical approaches, including a rigorous evaluation of both absolute and relative errors, demonstrates the efficacy of these techniques compared to the exact solutions. This robust examination enhances the theoretical foundations and practical use of such ODEs in understanding complex behavioral patterns, showcasing the connection between theoretical understanding and real-world applications.
期刊介绍:
JAMC is a broad based journal covering all branches of computational or applied mathematics with special encouragement to researchers in theoretical computer science and mathematical computing. Major areas, such as numerical analysis, discrete optimization, linear and nonlinear programming, theory of computation, control theory, theory of algorithms, computational logic, applied combinatorics, coding theory, cryptograhics, fuzzy theory with applications, differential equations with applications are all included. A large variety of scientific problems also necessarily involve Algebra, Analysis, Geometry, Probability and Statistics and so on. The journal welcomes research papers in all branches of mathematics which have some bearing on the application to scientific problems, including papers in the areas of Actuarial Science, Mathematical Biology, Mathematical Economics and Finance.