A review on deep learning-based automated lunar crater detection

IF 2.7 4区 地球科学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Earth Science Informatics Pub Date : 2024-07-05 DOI:10.1007/s12145-024-01396-2
Chinmayee Chaini, Vijay Kumar Jha
{"title":"A review on deep learning-based automated lunar crater detection","authors":"Chinmayee Chaini, Vijay Kumar Jha","doi":"10.1007/s12145-024-01396-2","DOIUrl":null,"url":null,"abstract":"<p>The lunar surface, which has been extensively explored and studied, offers valuable insights into its geological history and crater distribution due to the abundance of impact craters on its surface. Detecting numerous craters of different sizes on the lunar surface necessitated an automated process to avoid manual intervention, which consumed significant time and effort. However, traditional methods rely on manual feature extraction methods, encountering similar challenges, including low performance, particularly when confronted with diverse crater sizes and illumination conditions. In recent years, intelligent algorithms that introduce automated crater detection algorithms (CDAs) using deep learning (DL) techniques have played a vital role in detecting various sizes of craters on the lunar surface that may be missed or miss-classification by visual interpretation. This study outlines the challenges faced by traditional methods and explores recent advancements in DL techniques. The main objective is to provide a comprehensive review of prior studies, highlighting the advantages and limitations of each DL-based technique for automatic crater detection. Additionally, this study aggregates existing research on various image-processing tasks (such as semantic segmentation, classification-based, and object detection) utilizing DL-based techniques for detecting various sizes of craters on the lunar surface. Further, this study provides a comprehensive analysis of both manually and automatically compiled crater databases to assist new researchers in validating their models both qualitatively and quantitatively. By reviewing existing literature, this study aids new researchers in understanding the limitations and key findings of recent research, thereby promoting progress toward greater automation in crater detection.</p>","PeriodicalId":49318,"journal":{"name":"Earth Science Informatics","volume":"42 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Science Informatics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s12145-024-01396-2","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The lunar surface, which has been extensively explored and studied, offers valuable insights into its geological history and crater distribution due to the abundance of impact craters on its surface. Detecting numerous craters of different sizes on the lunar surface necessitated an automated process to avoid manual intervention, which consumed significant time and effort. However, traditional methods rely on manual feature extraction methods, encountering similar challenges, including low performance, particularly when confronted with diverse crater sizes and illumination conditions. In recent years, intelligent algorithms that introduce automated crater detection algorithms (CDAs) using deep learning (DL) techniques have played a vital role in detecting various sizes of craters on the lunar surface that may be missed or miss-classification by visual interpretation. This study outlines the challenges faced by traditional methods and explores recent advancements in DL techniques. The main objective is to provide a comprehensive review of prior studies, highlighting the advantages and limitations of each DL-based technique for automatic crater detection. Additionally, this study aggregates existing research on various image-processing tasks (such as semantic segmentation, classification-based, and object detection) utilizing DL-based techniques for detecting various sizes of craters on the lunar surface. Further, this study provides a comprehensive analysis of both manually and automatically compiled crater databases to assist new researchers in validating their models both qualitatively and quantitatively. By reviewing existing literature, this study aids new researchers in understanding the limitations and key findings of recent research, thereby promoting progress toward greater automation in crater detection.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的月球环形山自动探测综述
由于月球表面有大量的撞击坑,人们对月球表面进行了广泛的探索和研究,从而对月球的地质历史和撞击坑分布有了宝贵的了解。要探测月球表面众多大小不一的撞击坑,就必须采用自动化流程,以避免耗费大量时间和精力的人工干预。然而,传统方法依赖于人工特征提取方法,遇到了类似的挑战,包括性能低下,特别是在面对不同大小和光照条件的环形山时。近年来,利用深度学习(DL)技术引入自动环形山检测算法(CDA)的智能算法在检测月球表面各种大小的环形山方面发挥了重要作用,这些环形山可能会被目视判读遗漏或误判。本研究概述了传统方法面临的挑战,并探讨了深度学习技术的最新进展。主要目的是对之前的研究进行全面回顾,强调每种基于 DL 的环形山自动检测技术的优势和局限性。此外,本研究还汇总了利用基于 DL 的技术对各种图像处理任务(如语义分割、分类和物体检测)进行的现有研究,以检测月球表面各种大小的环形山。此外,本研究还对人工和自动编制的环形山数据库进行了全面分析,以帮助新研究人员从定性和定量两方面验证其模型。通过回顾现有文献,本研究帮助新研究人员了解近期研究的局限性和主要发现,从而推动环形山探测自动化的进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Earth Science Informatics
Earth Science Informatics COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-GEOSCIENCES, MULTIDISCIPLINARY
CiteScore
4.60
自引率
3.60%
发文量
157
审稿时长
4.3 months
期刊介绍: The Earth Science Informatics [ESIN] journal aims at rapid publication of high-quality, current, cutting-edge, and provocative scientific work in the area of Earth Science Informatics as it relates to Earth systems science and space science. This includes articles on the application of formal and computational methods, computational Earth science, spatial and temporal analyses, and all aspects of computer applications to the acquisition, storage, processing, interchange, and visualization of data and information about the materials, properties, processes, features, and phenomena that occur at all scales and locations in the Earth system’s five components (atmosphere, hydrosphere, geosphere, biosphere, cryosphere) and in space (see "About this journal" for more detail). The quarterly journal publishes research, methodology, and software articles, as well as editorials, comments, and book and software reviews. Review articles of relevant findings, topics, and methodologies are also considered.
期刊最新文献
Estimation of the elastic modulus of basaltic rocks using machine learning methods Feature-adaptive FPN with multiscale context integration for underwater object detection Autoregressive modelling of tropospheric radio refractivity over selected locations in tropical Nigeria using artificial neural network Time series land subsidence monitoring and prediction based on SBAS-InSAR and GeoTemporal transformer model Drought index time series forecasting via three-in-one machine learning concept for the Euphrates basin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1