Na Liu, Yan Sun, Jiabao Wang, Zhe Wang, Ahmad Rastegarnia, Jafar Qajar
{"title":"Estimation of static Young’s modulus of sandstone types: effective machine learning and statistical models","authors":"Na Liu, Yan Sun, Jiabao Wang, Zhe Wang, Ahmad Rastegarnia, Jafar Qajar","doi":"10.1007/s12145-024-01392-6","DOIUrl":null,"url":null,"abstract":"<p>The elastic modulus is one of the important parameters for analyzing the stability of engineering projects, especially dam sites. In the current study, the effect of physical properties, quartz, fragment, and feldspar percentages, and dynamic Young’s modulus (DYM) on the static Young’s modulus (SYM) of the various types of sandstones was assessed. These investigations were conducted through simple and multivariate regression, support vector regression, adaptive neuro-fuzzy inference system, and backpropagation multilayer perceptron. The XRD and thin section results showed that the studied samples were classified as arenite, litharenite, and feldspathic litharenite. The low resistance of the arenite type is mainly due to the presence of sulfate cement, clay minerals, high porosity, and carbonate fragments in this type. Examining the fracture patterns of these sandstones in different resistance ranges showed that at low values of resistance, the fracture pattern is mainly of simple shear type, which changes to multiple extension types with increasing compressive strength. Among the influencing factors, the percentage of quartz has the greatest effect on SYM. A comparison of the methods' performance based on CPM and error values in estimating SYM revealed that SVR (R<sup>2</sup> = 0.98, RMSE = 0.11GPa, CPM = + 1.84) outperformed other methods in terms of accuracy. The average difference between predicted SYM using intelligent methods and measured SYM value was less than 0.05% which indicates the efficiency of the used methods in estimating SYM.</p>","PeriodicalId":49318,"journal":{"name":"Earth Science Informatics","volume":"136 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Science Informatics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s12145-024-01392-6","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The elastic modulus is one of the important parameters for analyzing the stability of engineering projects, especially dam sites. In the current study, the effect of physical properties, quartz, fragment, and feldspar percentages, and dynamic Young’s modulus (DYM) on the static Young’s modulus (SYM) of the various types of sandstones was assessed. These investigations were conducted through simple and multivariate regression, support vector regression, adaptive neuro-fuzzy inference system, and backpropagation multilayer perceptron. The XRD and thin section results showed that the studied samples were classified as arenite, litharenite, and feldspathic litharenite. The low resistance of the arenite type is mainly due to the presence of sulfate cement, clay minerals, high porosity, and carbonate fragments in this type. Examining the fracture patterns of these sandstones in different resistance ranges showed that at low values of resistance, the fracture pattern is mainly of simple shear type, which changes to multiple extension types with increasing compressive strength. Among the influencing factors, the percentage of quartz has the greatest effect on SYM. A comparison of the methods' performance based on CPM and error values in estimating SYM revealed that SVR (R2 = 0.98, RMSE = 0.11GPa, CPM = + 1.84) outperformed other methods in terms of accuracy. The average difference between predicted SYM using intelligent methods and measured SYM value was less than 0.05% which indicates the efficiency of the used methods in estimating SYM.
期刊介绍:
The Earth Science Informatics [ESIN] journal aims at rapid publication of high-quality, current, cutting-edge, and provocative scientific work in the area of Earth Science Informatics as it relates to Earth systems science and space science. This includes articles on the application of formal and computational methods, computational Earth science, spatial and temporal analyses, and all aspects of computer applications to the acquisition, storage, processing, interchange, and visualization of data and information about the materials, properties, processes, features, and phenomena that occur at all scales and locations in the Earth system’s five components (atmosphere, hydrosphere, geosphere, biosphere, cryosphere) and in space (see "About this journal" for more detail). The quarterly journal publishes research, methodology, and software articles, as well as editorials, comments, and book and software reviews. Review articles of relevant findings, topics, and methodologies are also considered.