How to Trap a Gradient Flow

IF 1.2 3区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS SIAM Journal on Computing Pub Date : 2024-07-03 DOI:10.1137/21m1397854
Sébastien Bubeck, Dan Mikulincer
{"title":"How to Trap a Gradient Flow","authors":"Sébastien Bubeck, Dan Mikulincer","doi":"10.1137/21m1397854","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Computing, Volume 53, Issue 4, Page 803-824, August 2024. <br/> Abstract. We consider the problem of finding an [math]-approximate stationary point of a smooth function on a compact domain of [math]. In contrast with dimension-free approaches such as gradient descent, we focus here on the case where [math] is finite, and potentially small. This viewpoint was explored in 1993 by Vavasis, who proposed an algorithm which, for any fixed finite dimension [math], improves upon the [math] oracle complexity of gradient descent. For example for [math], Vavasis’s approach obtains the complexity [math]. Moreover, for [math] he also proved a lower bound of [math] for deterministic algorithms (we extend this result to randomized algorithms). Our main contribution is an algorithm, which we call gradient flow trapping (GFT), and the analysis of its oracle complexity. In dimension [math], GFT closes the gap with Vavasis’s lower bound (up to a logarithmic factor), as we show that it has complexity [math]. In dimension [math], we show a complexity of [math], improving upon Vavasis’s [math]. In higher dimensions, GFT has the remarkable property of being a logarithmic parallel depth strategy, in stark contrast with the polynomial depth of gradient descent or Vavasis’s algorithm. We augment this result with another algorithm, named cut and flow (CF), which improves upon Vavasis’s algorithm in any fixed dimension.","PeriodicalId":49532,"journal":{"name":"SIAM Journal on Computing","volume":"26 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1137/21m1397854","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Computing, Volume 53, Issue 4, Page 803-824, August 2024.
Abstract. We consider the problem of finding an [math]-approximate stationary point of a smooth function on a compact domain of [math]. In contrast with dimension-free approaches such as gradient descent, we focus here on the case where [math] is finite, and potentially small. This viewpoint was explored in 1993 by Vavasis, who proposed an algorithm which, for any fixed finite dimension [math], improves upon the [math] oracle complexity of gradient descent. For example for [math], Vavasis’s approach obtains the complexity [math]. Moreover, for [math] he also proved a lower bound of [math] for deterministic algorithms (we extend this result to randomized algorithms). Our main contribution is an algorithm, which we call gradient flow trapping (GFT), and the analysis of its oracle complexity. In dimension [math], GFT closes the gap with Vavasis’s lower bound (up to a logarithmic factor), as we show that it has complexity [math]. In dimension [math], we show a complexity of [math], improving upon Vavasis’s [math]. In higher dimensions, GFT has the remarkable property of being a logarithmic parallel depth strategy, in stark contrast with the polynomial depth of gradient descent or Vavasis’s algorithm. We augment this result with another algorithm, named cut and flow (CF), which improves upon Vavasis’s algorithm in any fixed dimension.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
如何捕捉梯度流
SIAM 计算期刊》,第 53 卷第 4 期,第 803-824 页,2024 年 8 月。 摘要。我们考虑在[math]的紧凑域上寻找光滑函数的[math]近似驻点问题。与梯度下降等无维度方法不同,我们在此关注 [math] 有限且可能很小的情况。1993 年,瓦瓦西斯(Vavasis)对这一观点进行了探索,他提出了一种算法,对于任何固定的有限维度 [math],该算法都能改善梯度下降法的 [math] 甲骨文复杂度。例如,对于[math],Vavasis 的方法可以获得[math]的复杂度。此外,对于[math],他还证明了确定性算法的[math]下界(我们将这一结果扩展到随机算法)。我们的主要贡献是一种我们称之为梯度流陷阱(GFT)的算法,以及对其甲骨文复杂度的分析。在维度[数学]上,GFT 缩小了与瓦瓦西斯下界的差距(达到对数因子),因为我们证明了它具有复杂度[数学]。在维度[数学]中,我们展示了[数学]的复杂度,比瓦瓦西斯的[数学]更进一步。在更高维度上,GFT 有一个显著的特性,即它是一种对数并行深度策略,这与梯度下降或瓦瓦西斯算法的多项式深度形成了鲜明对比。我们用另一种名为 "切割与流动"(cut and flow,CF)的算法扩展了这一结果,该算法在任何固定维度上都比瓦瓦西斯算法有所改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
SIAM Journal on Computing
SIAM Journal on Computing 工程技术-计算机:理论方法
CiteScore
4.60
自引率
0.00%
发文量
68
审稿时长
6-12 weeks
期刊介绍: The SIAM Journal on Computing aims to provide coverage of the most significant work going on in the mathematical and formal aspects of computer science and nonnumerical computing. Submissions must be clearly written and make a significant technical contribution. Topics include but are not limited to analysis and design of algorithms, algorithmic game theory, data structures, computational complexity, computational algebra, computational aspects of combinatorics and graph theory, computational biology, computational geometry, computational robotics, the mathematical aspects of programming languages, artificial intelligence, computational learning, databases, information retrieval, cryptography, networks, distributed computing, parallel algorithms, and computer architecture.
期刊最新文献
Optimal Resizable Arrays Stronger 3-SUM Lower Bounds for Approximate Distance Oracles via Additive Combinatorics Resolving Matrix Spencer Conjecture up to Poly-Logarithmic Rank Complexity Classification Transfer for CSPs via Algebraic Products Optimal Sublinear Sampling of Spanning Trees and Determinantal Point Processes via Average-Case Entropic Independence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1