Developing, characterizing and modeling CRISPR-based point-of-use pathogen diagnostics

Jaeyoung K. Jung, Kathleen S. Dreyer, Kate E. Dray, Joseph J. Muldoon, Jithin George, Sasha Shirman, Maria D. Cabezas, Anne E. D'Aquino, Matthew S. Verosloff, Kosuke Seki, Grant A. Rybnicky, Khalid K. Alam, Neda Bagheri, Michael C. Jewett, Joshua Nathaniel Leonard, Niall M. Mangan, Julius B Lucks
{"title":"Developing, characterizing and modeling CRISPR-based point-of-use pathogen diagnostics","authors":"Jaeyoung K. Jung, Kathleen S. Dreyer, Kate E. Dray, Joseph J. Muldoon, Jithin George, Sasha Shirman, Maria D. Cabezas, Anne E. D'Aquino, Matthew S. Verosloff, Kosuke Seki, Grant A. Rybnicky, Khalid K. Alam, Neda Bagheri, Michael C. Jewett, Joshua Nathaniel Leonard, Niall M. Mangan, Julius B Lucks","doi":"10.1101/2024.07.03.601853","DOIUrl":null,"url":null,"abstract":"Recent years have seen intense interest in the development of point-of-care nucleic acid diagnostic technologies to address the scaling limitations of laboratory-based approaches. Chief among these are combinations of isothermal amplification approaches with CRISPR-based detection and readouts of target products. Here, we contribute to the growing body of rapid, programmable point-of-care pathogen tests by developing and optimizing a one-pot NASBA-Cas13a nucleic acid detection assay. This test uses the isothermal amplification technique NASBA to amplify target viral nucleic acids, followed by Cas13a-based detection of amplified sequences. We first demonstrate an in-house formulation of NASBA that enables optimization of individual NASBA components. We then present design rules for NASBA primer sets and LbuCas13a guide RNAs for fast and sensitive detection of SARS-CoV-2 viral RNA fragments, resulting in 20 - 200 aM sensitivity without any specialized equipment. Finally, we explore the combination of high-throughput assay condition screening with mechanistic ordinary differential equation modeling of the reaction scheme to gain a deeper understanding of the NASBA-Cas13a system. This work presents a framework for developing a mechanistic understanding of reaction performance and optimization that uses both experiments and modeling, which we anticipate will be useful in developing future nucleic acid detection technologies.","PeriodicalId":501408,"journal":{"name":"bioRxiv - Synthetic Biology","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Synthetic Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.07.03.601853","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent years have seen intense interest in the development of point-of-care nucleic acid diagnostic technologies to address the scaling limitations of laboratory-based approaches. Chief among these are combinations of isothermal amplification approaches with CRISPR-based detection and readouts of target products. Here, we contribute to the growing body of rapid, programmable point-of-care pathogen tests by developing and optimizing a one-pot NASBA-Cas13a nucleic acid detection assay. This test uses the isothermal amplification technique NASBA to amplify target viral nucleic acids, followed by Cas13a-based detection of amplified sequences. We first demonstrate an in-house formulation of NASBA that enables optimization of individual NASBA components. We then present design rules for NASBA primer sets and LbuCas13a guide RNAs for fast and sensitive detection of SARS-CoV-2 viral RNA fragments, resulting in 20 - 200 aM sensitivity without any specialized equipment. Finally, we explore the combination of high-throughput assay condition screening with mechanistic ordinary differential equation modeling of the reaction scheme to gain a deeper understanding of the NASBA-Cas13a system. This work presents a framework for developing a mechanistic understanding of reaction performance and optimization that uses both experiments and modeling, which we anticipate will be useful in developing future nucleic acid detection technologies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
开发、鉴定和模拟基于 CRISPR 的使用点病原体诊断方法
近年来,人们对开发护理点核酸诊断技术产生了浓厚的兴趣,以解决实验室方法在规模上的局限性。其中最主要的是将等温扩增方法与基于 CRISPR 的目标产物检测和读出相结合。在这里,我们通过开发和优化一锅式 NASBA-Cas13a 核酸检测试验,为日益增多的快速、可编程床旁病原体检测技术做出了贡献。该检测使用等温扩增技术 NASBA 来扩增目标病毒核酸,然后基于 Cas13a 对扩增序列进行检测。我们首先展示了 NASBA 的内部配方,该配方可以优化 NASBA 的各个成分。然后,我们介绍了 NASBA 引物组和 LbuCas13a 引导 RNA 的设计规则,用于快速灵敏地检测 SARS-CoV-2 病毒 RNA 片段,无需任何专业设备即可达到 20 - 200 aM 的灵敏度。最后,我们探索了将高通量检测条件筛选与反应方案的机理常微分方程建模相结合,以加深对 NASBA-Cas13a 系统的理解。这项工作提出了一个利用实验和建模从机理上理解反应性能和优化的框架,我们预计这将有助于开发未来的核酸检测技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DNA-templated spatially controlled proteolysis targeting chimeras for CyclinD1-CDK4/6 complex protein degradation Cas9AEY (Cas9-facilitated Homologous Recombination Assembly of non-specific Escherichia coli yeast vector) method of constructing large-sized DNA. Metabolite-responsive Control of Transcription by Phase Separation-based Synthetic Organelles A modular system for programming multistep activation of endogenous genes in stem cells Mutual dependence between membrane phase separation and bacterial division protein dynamics in synthetic cell models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1