{"title":"Glucose concentration evaluation in blood samples using novel microwave antenna sensor","authors":"Jagadeesh Babu Kamili, Kiran Kumar Bandi","doi":"10.1007/s00542-024-05716-w","DOIUrl":null,"url":null,"abstract":"<p>A highly sensitive and novel antenna sensor is designed for evaluating concentration of glucose in the human blood. The proposed sensor is constructed on an FR4 substrate layer of dimensions 20 mm × 30 mm × 1.6 mm with dielectric constant value of 4.3 resonance at 5 GHz with a quality factor of 471. In order to predict the amount of glucose, a human finger phantom model is developed in the electromagnetic simulator. The glucose levels are varied in various degrees from 0 to 1000 mg/dL and the resulting frequency shifts are measured by placing the phantom at various locations at different angles on the developed antenna sensor. When the phantom is located at 0<sup>0</sup> on the proposed sensor, a total frequency shift of 24 MHz, FDR of 24 kHz/(mg/dL) and sensitivity of 0.48x<span>\\({10}^{-3}{(mg/dL)}^{-1}\\)</span> are observed enabling the proposed sensor to detect diabetic conditions in the patients with high precision. The performance of the proposed sensor is analyzed for different real human finger positions and the resulting resonant frequencies are measured to verify the sensor’s performance in real-time scenario. The proposed sensor shows the average measurement error of about 1.9875% to detect glucose concentration levels.</p>","PeriodicalId":18544,"journal":{"name":"Microsystem Technologies","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystem Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00542-024-05716-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A highly sensitive and novel antenna sensor is designed for evaluating concentration of glucose in the human blood. The proposed sensor is constructed on an FR4 substrate layer of dimensions 20 mm × 30 mm × 1.6 mm with dielectric constant value of 4.3 resonance at 5 GHz with a quality factor of 471. In order to predict the amount of glucose, a human finger phantom model is developed in the electromagnetic simulator. The glucose levels are varied in various degrees from 0 to 1000 mg/dL and the resulting frequency shifts are measured by placing the phantom at various locations at different angles on the developed antenna sensor. When the phantom is located at 00 on the proposed sensor, a total frequency shift of 24 MHz, FDR of 24 kHz/(mg/dL) and sensitivity of 0.48x\({10}^{-3}{(mg/dL)}^{-1}\) are observed enabling the proposed sensor to detect diabetic conditions in the patients with high precision. The performance of the proposed sensor is analyzed for different real human finger positions and the resulting resonant frequencies are measured to verify the sensor’s performance in real-time scenario. The proposed sensor shows the average measurement error of about 1.9875% to detect glucose concentration levels.