Color and multi-band imaging of a cavity-based flameholder in supersonic flow

IF 5.3 2区 工程技术 Q2 ENERGY & FUELS Proceedings of the Combustion Institute Pub Date : 2024-07-03 DOI:10.1016/j.proci.2024.105268
Seong-Young Lee, Timothy M. Ombrello
{"title":"Color and multi-band imaging of a cavity-based flameholder in supersonic flow","authors":"Seong-Young Lee, Timothy M. Ombrello","doi":"10.1016/j.proci.2024.105268","DOIUrl":null,"url":null,"abstract":"Utilizing time-resolved CH*/C* and multi-angle color flame imaging recorded at 1 kHz/22.5 kHz frequencies, this study investigates the dynamics and stabilization of supersonic flames in a cavity flameholder combustor at Mach 2, with ethylene fuel and air. A stagnation pressure of 289 kPa was used for the stable cavity burning experiments with fuel flow rates of 30, 60, and 90 slpm and 483 kPa for ignition transient experiments with fuel flow rates of 55 and 90 slpm, injecting fuel at the closeout ramp. The stagnation temperature was 597 K. Chemiluminescence analysis focused on the equivalence ratio (ER) and combustion intensity, while a fiber-based endoscope captured color flame image, informing on premixedness, flame structure, and flame surface density. Results from transient ignition showed that a progression from lean to stoichiometric, and ultimately to fuel-rich conditions was observed, with marked transitions occurring along the cavity floor. High-intensity CH* regions were consistently associated with fuel-rich zones. Digital flame coloration discrimination (DFCD) analysis provided insights into the mixing efficiency, affecting the flame color and structure. Despite reduced fuel flow rates significantly altering flame characteristics, such as thickness and the persistence of a 'W' flame structure, the shear layer remained a focal point for optimal combustion conditions. The study demonstrated that the shear layer's intense turbulent mixing is crucial for flame stability and structure, with chemiluminescence surface density (CSD) profiles suggesting balanced combustion at 60 and 90 slpm flow rates. However, an asymmetry of CSD at 30 slpm indicated a shift towards fuel-rich conditions at the burning surface, indicating potential instability and elevated blowout.","PeriodicalId":408,"journal":{"name":"Proceedings of the Combustion Institute","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Combustion Institute","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.proci.2024.105268","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Utilizing time-resolved CH*/C* and multi-angle color flame imaging recorded at 1 kHz/22.5 kHz frequencies, this study investigates the dynamics and stabilization of supersonic flames in a cavity flameholder combustor at Mach 2, with ethylene fuel and air. A stagnation pressure of 289 kPa was used for the stable cavity burning experiments with fuel flow rates of 30, 60, and 90 slpm and 483 kPa for ignition transient experiments with fuel flow rates of 55 and 90 slpm, injecting fuel at the closeout ramp. The stagnation temperature was 597 K. Chemiluminescence analysis focused on the equivalence ratio (ER) and combustion intensity, while a fiber-based endoscope captured color flame image, informing on premixedness, flame structure, and flame surface density. Results from transient ignition showed that a progression from lean to stoichiometric, and ultimately to fuel-rich conditions was observed, with marked transitions occurring along the cavity floor. High-intensity CH* regions were consistently associated with fuel-rich zones. Digital flame coloration discrimination (DFCD) analysis provided insights into the mixing efficiency, affecting the flame color and structure. Despite reduced fuel flow rates significantly altering flame characteristics, such as thickness and the persistence of a 'W' flame structure, the shear layer remained a focal point for optimal combustion conditions. The study demonstrated that the shear layer's intense turbulent mixing is crucial for flame stability and structure, with chemiluminescence surface density (CSD) profiles suggesting balanced combustion at 60 and 90 slpm flow rates. However, an asymmetry of CSD at 30 slpm indicated a shift towards fuel-rich conditions at the burning surface, indicating potential instability and elevated blowout.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超音速流中空腔焰室的彩色和多波段成像
本研究利用在 1 kHz/22.5 kHz 频率下记录的时间分辨 CH*/C* 和多角度彩色火焰成像,研究了空腔焰座燃烧器中的超音速火焰在马赫数为 2 时的动态和稳定情况,其中使用了乙烯燃料和空气。在燃料流量为 30、60 和 90 slpm 的情况下,空腔稳定燃烧实验的停滞压力为 289 kPa;在燃料流量为 55 和 90 slpm 的情况下,在关闭斜坡处注入燃料,点火瞬态实验的停滞压力为 483 kPa。化学发光分析侧重于等效比(ER)和燃烧强度,而纤维内窥镜则捕捉彩色火焰图像,以了解预混度、火焰结构和火焰表面密度。瞬态点火的结果表明,从贫燃到定燃比,再到最终的富燃条件,沿空腔底部发生了明显的转变。高强度 CH* 区域始终与燃料丰富区域相关联。数字火焰着色判别(DFCD)分析有助于深入了解影响火焰颜色和结构的混合效率。尽管降低的燃料流速大大改变了火焰特性,如厚度和 "W "火焰结构的持续性,但剪切层仍然是最佳燃烧条件的焦点。研究表明,剪切层的强烈湍流混合对火焰的稳定性和结构至关重要,化学发光表面密度(CSD)曲线表明,在流速为 60 和 90 slpm 时,燃烧是平衡的。然而,在 30 slpm 时,CSD 的不对称表明燃烧表面向富含燃料的条件转变,这表明存在潜在的不稳定性和井喷现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Proceedings of the Combustion Institute
Proceedings of the Combustion Institute 工程技术-工程:化工
CiteScore
7.00
自引率
0.00%
发文量
420
审稿时长
3.0 months
期刊介绍: The Proceedings of the Combustion Institute contains forefront contributions in fundamentals and applications of combustion science. For more than 50 years, the Combustion Institute has served as the peak international society for dissemination of scientific and technical research in the combustion field. In addition to author submissions, the Proceedings of the Combustion Institute includes the Institute''s prestigious invited strategic and topical reviews that represent indispensable resources for emergent research in the field. All papers are subjected to rigorous peer review. Research papers and invited topical reviews; Reaction Kinetics; Soot, PAH, and other large molecules; Diagnostics; Laminar Flames; Turbulent Flames; Heterogeneous Combustion; Spray and Droplet Combustion; Detonations, Explosions & Supersonic Combustion; Fire Research; Stationary Combustion Systems; IC Engine and Gas Turbine Combustion; New Technology Concepts The electronic version of Proceedings of the Combustion Institute contains supplemental material such as reaction mechanisms, illustrating movies, and other data.
期刊最新文献
Spray and combustion characterization under an ultra-high-density condition – Multi-fuel comparison Impact of carbon-free fuels addition on self-excited combustion oscillations in partially premixed CH4/air swirl flames Enhanced combustion performance and reduced NOx emissions during chemical looping ammonia combustion with Cu-Fe oxygen carrier Co-oxidation of pyridine and pyrrole as a dual component model compound of fuel nitrogen in coal Investigation of burning velocity of lean and rich premixed NH3/H2 turbulent flames using multi-scalar imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1