Roman V. Zakharov, Olga V. Tikhonova, Nikolay V. Klenov, Igor I. Soloviev, Vladimir N. Antonov, Dmitry S. Yakovlev
{"title":"Solid-State Qubit as an On-Chip Controller for Non-Classical Field States","authors":"Roman V. Zakharov, Olga V. Tikhonova, Nikolay V. Klenov, Igor I. Soloviev, Vladimir N. Antonov, Dmitry S. Yakovlev","doi":"10.1002/qute.202400141","DOIUrl":null,"url":null,"abstract":"<p>A basic element of a quantum network based on two single-mode waveguides is proposed with different frequencies connected by a solid-state qubit. Using a simple example of a possible superconducting implementation, the usefulness of the simplifications used in the general theoretical consideration has been justified. The non-classical field in a single-mode with a frequency of <span></span><math>\n <semantics>\n <msub>\n <mi>ω</mi>\n <mn>1</mn>\n </msub>\n <annotation>$\\omega _1$</annotation>\n </semantics></math> is fed to the input of a qubit controller and transformed into a non-classical field in an output single-mode with a frequency of <span></span><math>\n <semantics>\n <msub>\n <mi>ω</mi>\n <mn>2</mn>\n </msub>\n <annotation>$\\omega _2$</annotation>\n </semantics></math>. The interface can establish a quantum connection between solid-state and photonic flying qubits with adjustable pulse shapes and carrier frequencies. This allows quantum information to be transferred to other superconducting or atomic-based quantum registers or chips. The peculiarities of the wave-qubit interactions are described, showing how they help to control the quantum state of the non-classical field. On this basis, the operating principles of solid-state and flying qubits for the future quantum information platforms are considered.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"7 10","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/qute.202400141","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced quantum technologies","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qute.202400141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
A basic element of a quantum network based on two single-mode waveguides is proposed with different frequencies connected by a solid-state qubit. Using a simple example of a possible superconducting implementation, the usefulness of the simplifications used in the general theoretical consideration has been justified. The non-classical field in a single-mode with a frequency of is fed to the input of a qubit controller and transformed into a non-classical field in an output single-mode with a frequency of . The interface can establish a quantum connection between solid-state and photonic flying qubits with adjustable pulse shapes and carrier frequencies. This allows quantum information to be transferred to other superconducting or atomic-based quantum registers or chips. The peculiarities of the wave-qubit interactions are described, showing how they help to control the quantum state of the non-classical field. On this basis, the operating principles of solid-state and flying qubits for the future quantum information platforms are considered.