{"title":"Transfer Learning Based Face Emotion Recognition Using Meshed Faces and Oval Cropping: A Novel Approach","authors":"Ennaji Fatima Zohra, El Kabtane Hamada","doi":"10.3103/S1060992X24700073","DOIUrl":null,"url":null,"abstract":"<p>The potential applications of emotion recognition from facial expressions have generated considerable interest across multiple domains, encompassing areas such as human-computer interaction, camera and mental health analysis. In this article, a novel approach has been proposed for face emotion recognition (FER) using several data preprocessing and Feature extraction steps such as Face Mesh, data augmentation and oval cropping of the faces. A transfer learning using VGG19 architecture and a Deep Convolution Neural Network (DCNN) have been proposed. We demonstrate the effectiveness of the proposed approach through extensive experiments on the Cohn-Kanade+ (CK+) dataset, comparing it with existing state-of-the-art methods. An accuracy of 99.79% was found using the VGG19. Finally, a set of images collected from an AI tool that generates images based on textual description have been done and tested using our model. The results indicate that the solution achieves superior performance, offering a promising solution for accurate and real-time face emotion recognition.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"33 2","pages":"178 - 192"},"PeriodicalIF":1.0000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Memory and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1060992X24700073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The potential applications of emotion recognition from facial expressions have generated considerable interest across multiple domains, encompassing areas such as human-computer interaction, camera and mental health analysis. In this article, a novel approach has been proposed for face emotion recognition (FER) using several data preprocessing and Feature extraction steps such as Face Mesh, data augmentation and oval cropping of the faces. A transfer learning using VGG19 architecture and a Deep Convolution Neural Network (DCNN) have been proposed. We demonstrate the effectiveness of the proposed approach through extensive experiments on the Cohn-Kanade+ (CK+) dataset, comparing it with existing state-of-the-art methods. An accuracy of 99.79% was found using the VGG19. Finally, a set of images collected from an AI tool that generates images based on textual description have been done and tested using our model. The results indicate that the solution achieves superior performance, offering a promising solution for accurate and real-time face emotion recognition.
期刊介绍:
The journal covers a wide range of issues in information optics such as optical memory, mechanisms for optical data recording and processing, photosensitive materials, optical, optoelectronic and holographic nanostructures, and many other related topics. Papers on memory systems using holographic and biological structures and concepts of brain operation are also included. The journal pays particular attention to research in the field of neural net systems that may lead to a new generation of computional technologies by endowing them with intelligence.