HPO Based Enhanced Elman Spike Neural Network for Detecting Speech of People with Dysarthria

Pranav Kumar, Md. Talib Ahmad, Ranjana Kumari
{"title":"HPO Based Enhanced Elman Spike Neural Network for Detecting Speech of People with Dysarthria","authors":"Pranav Kumar,&nbsp;Md. Talib Ahmad,&nbsp;Ranjana Kumari","doi":"10.3103/S1060992X24700097","DOIUrl":null,"url":null,"abstract":"<p>Motor speech condition called dysarthria is caused by a lack of movement in the lips, tongue, vocal cords, and diaphragm are a few of the muscles needed to produce speech. Speech that is slurred, sluggish, or inaccurate might be the initial sign of dysarthria, which varies in severity. Parkinson’s disease, muscular dystrophy, multiple sclerosis, brain tumors, brain damage, and amyotrophic lateral sclerosis are among the health problems that can result from dysarthria. This research develops an efficient method for extracting features and classifying dysarthria affected persons from speech signals. This suggested method uses a speech signal as its source. The supplied speech signal is pre-processed to improve the identification of dysarthria speech. Pre-processing methods like the Butterworth band pass filter and Savitzky Golay digital FIR filter are used to smoothing the raw data. After pre-processing, the signals are input into the feature extraction techniques, such as Yule-Walker Autoregressive modelling, Mel frequency cepstral coefficients and Perceptual Linear Predictive to extract the important features. The dysarthria speech is finally detected using an improved Elman Spike Neural Network (EESNN) algorithm-based classifier. Hunter Prey Optimization (HPO) is used to select the weights of EESNN optimally. The proposed algorithm achieves 94.25% accuracy and 94.26% specificity values. Thus this proposed approach is the best choice for predicting dysarthria disease using speech signal.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"33 2","pages":"205 - 220"},"PeriodicalIF":1.0000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Memory and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1060992X24700097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Motor speech condition called dysarthria is caused by a lack of movement in the lips, tongue, vocal cords, and diaphragm are a few of the muscles needed to produce speech. Speech that is slurred, sluggish, or inaccurate might be the initial sign of dysarthria, which varies in severity. Parkinson’s disease, muscular dystrophy, multiple sclerosis, brain tumors, brain damage, and amyotrophic lateral sclerosis are among the health problems that can result from dysarthria. This research develops an efficient method for extracting features and classifying dysarthria affected persons from speech signals. This suggested method uses a speech signal as its source. The supplied speech signal is pre-processed to improve the identification of dysarthria speech. Pre-processing methods like the Butterworth band pass filter and Savitzky Golay digital FIR filter are used to smoothing the raw data. After pre-processing, the signals are input into the feature extraction techniques, such as Yule-Walker Autoregressive modelling, Mel frequency cepstral coefficients and Perceptual Linear Predictive to extract the important features. The dysarthria speech is finally detected using an improved Elman Spike Neural Network (EESNN) algorithm-based classifier. Hunter Prey Optimization (HPO) is used to select the weights of EESNN optimally. The proposed algorithm achieves 94.25% accuracy and 94.26% specificity values. Thus this proposed approach is the best choice for predicting dysarthria disease using speech signal.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 HPO 的增强型 Elman Spike 神经网络用于检测构音障碍者的语音
摘要 构音障碍是由于嘴唇、舌头、声带和横膈膜等发音所需的肌肉缺乏运动而引起的运动性语言疾病。说话含糊不清、迟缓或不准确可能是构音障碍的最初征兆,其严重程度各不相同。帕金森病、肌肉萎缩症、多发性硬化症、脑肿瘤、脑损伤和肌萎缩侧索硬化症等都可能导致构音障碍。本研究开发了一种从语音信号中提取特征并对构音障碍患者进行分类的有效方法。该方法以语音信号为源。对提供的语音信号进行预处理,以提高对构音障碍语音的识别能力。预处理方法包括巴特沃斯带通滤波器和萨维茨基-戈莱数字 FIR 滤波器,用于平滑原始数据。预处理后,信号被输入特征提取技术,如 Yule-Walker 自回归模型、Mel 频率共振频率系数和感知线性预测,以提取重要特征。最后,使用基于改进型 Elman Spike 神经网络(EESNN)算法的分类器检测构音障碍语音。猎人猎物优化(HPO)用于优化选择 EESNN 的权重。所提出的算法达到了 94.25% 的准确率和 94.26% 的特异性。因此,该方法是利用语音信号预测构音障碍疾病的最佳选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
25
期刊介绍: The journal covers a wide range of issues in information optics such as optical memory, mechanisms for optical data recording and processing, photosensitive materials, optical, optoelectronic and holographic nanostructures, and many other related topics. Papers on memory systems using holographic and biological structures and concepts of brain operation are also included. The journal pays particular attention to research in the field of neural net systems that may lead to a new generation of computional technologies by endowing them with intelligence.
期刊最新文献
IFDRF: Advancing Anomaly Detection with a Hybrid Machine Learning Model Tracking and Computation of Characteristics of the Movement of People in Groups on Video Using Convolutional Neural Networks Hybrid Network Model for Cardiac Image Segmentation Using MRI Images Magnetic Field-Controlled Phase Transitions in Antiferromagnetic Structures Abnormal Sound Event Detection Method Based on Time-Spectrum Information Fusion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1